These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8913855)

  • 21. Conformation of aminosuccinyl dipeptides Ac-Asu-X-NHMe from empirical energy calculations.
    Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A
    Pept Res; 1990; 3(6):262-70. PubMed ID: 2134069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum mechanical calculation of the effects of stiff and rigid constraints in the conformational equilibrium of the alanine dipeptide.
    Echenique P; Calvo I; Alonso JL
    J Comput Chem; 2006 Nov; 27(14):1733-47. PubMed ID: 16900494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependence of the L-alanyl-L-alanine conformation on molecular charge determined from ab initio computations and NMR spectra.
    Sychrovský V; Budesínský M; Benda L; Spirko V; Vokacova Z; Sebestík J; Bour P
    J Phys Chem B; 2008 Feb; 112(6):1796-805. PubMed ID: 18171047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies.
    Choi JH; Oh KI; Cho M
    J Chem Phys; 2008 Nov; 129(17):174512. PubMed ID: 19045363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of solvent in determining conformational preferences of alanine dipeptide in water.
    Drozdov AN; Grossfield A; Pappu RV
    J Am Chem Soc; 2004 Mar; 126(8):2574-81. PubMed ID: 14982467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and conformational properties of (Z)-beta-(1-naphthyl)- dehydroalanine residue.
    Inai Y; Oshikawa T; Yamashita M; Hirabayashi T; Hirako T
    Biopolymers; 2001 Jan; 58(1):9-19. PubMed ID: 11072225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data.
    Cruz V; Ramos J; Martínez-Salazar J
    J Phys Chem B; 2011 Apr; 115(16):4880-6. PubMed ID: 21469661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational analysis of the tyrosine dipeptide analogue in the gas phase and in aqueous solution by a density functional/continuum solvent model.
    Langella E; Rega N; Improta R; Crescenzi O; Barone V
    J Comput Chem; 2002 Apr; 23(6):650-61. PubMed ID: 11939597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new scheme for determining the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of glycine and alanine peptides.
    Wang CS; Zhang Y; Gao K; Yang ZZ
    J Chem Phys; 2005 Jul; 123(2):24307. PubMed ID: 16050745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The alanine model dipeptide Ac-Ala-NH2 exists as a mixture of C7(eq) and C5 conformers.
    Cabezas C; Varela M; Cortijo V; Jiménez AI; Peña I; Daly AM; López JC; Cativiela C; Alonso JL
    Phys Chem Chem Phys; 2013 Feb; 15(7):2580-5. PubMed ID: 23318605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment.
    Jono R; Watanabe Y; Shimizu K; Terada T
    J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergy of intramolecular hydrogen-bonding network in myo-inositol 2-monophosphate: theoretical investigations into the electronic structure, proton transfer, and pKa.
    Yang P; Murthy PP; Brown RE
    J Am Chem Soc; 2005 Nov; 127(45):15848-61. PubMed ID: 16277528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The low energy tautomers and conformers of the dipeptides HisGly and GlyHis and of their sodium ion complexes in the gas phase.
    Kapota C; Ohanessian G
    Phys Chem Chem Phys; 2005 Nov; 7(21):3744-55. PubMed ID: 16358024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of Alanine Dipeptide Conformational Equilibria on Graphene and Hydroxylated Derivatives.
    Poblete H; Miranda-Carvajal I; Comer J
    J Phys Chem B; 2017 Apr; 121(15):3895-3907. PubMed ID: 28291356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.