BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8913857)

  • 1. Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
    Krushelnitsky AG; Fedotov VD; Spevacek J; Straka J
    J Biomol Struct Dyn; 1996 Oct; 14(2):211-24. PubMed ID: 8913857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overall and internal protein dynamics in solution studied by the nonselective proton relaxation.
    Krushelnitsky AG; Fedotov VD
    J Biomol Struct Dyn; 1993 Aug; 11(1):121-41. PubMed ID: 8216940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C and 15N NMR study of the hydration response of T4 lysozyme and alphaB-crystallin internal dynamics.
    Krushelnitsky A; Zinkevich T; Mukhametshina N; Tarasova N; Gogolev Y; Gnezdilov O; Fedotov V; Belton P; Reichert D
    J Phys Chem B; 2009 Jul; 113(29):10022-34. PubMed ID: 19603846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of hydration on the conformation of bovine serum albumin studied by solid-state 13C-NMR spectroscopy.
    Gregory RB; Gangoda M; Gilpin RK; Su W
    Biopolymers; 1993 Dec; 33(12):1871-6. PubMed ID: 8268411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration dependence of backbone and side chain polylysine dynamics: a 13C solid-state NMR and IR spectroscopy study.
    Krushelnitsky A; Faizullin D; Reichert D
    Biopolymers; 2004 Jan; 73(1):1-15. PubMed ID: 14691935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics by solid-state NMR: detailed study of ibuprofen Na salt and comparison with ibuprofen.
    Carignani E; Borsacchi S; Geppi M
    J Phys Chem A; 2011 Aug; 115(32):8783-90. PubMed ID: 21744822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme-values statistics and dynamics of water at protein interfaces.
    Korb JP; Goddard Y; Pajski J; Diakova G; Bryant RG
    J Phys Chem B; 2011 Nov; 115(44):12845-58. PubMed ID: 21932852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear effect of GdnHCl on hydration dynamics of proteins: a 1H magnetic relaxation dispersion study.
    Rao MT; Bhuyan AK; Venu K; Sastry VS
    J Phys Chem B; 2009 May; 113(19):6994-7002. PubMed ID: 19388636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.
    Mack JW; Usha MG; Long J; Griffin RG; Wittebort RJ
    Biopolymers; 2000 Jan; 53(1):9-18. PubMed ID: 10644947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses.
    Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T
    Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Okuda H; Shiraishi A; Tuzi S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):5-14. PubMed ID: 14698378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels.
    Reichert D; Pascui O; deAzevedo ER; Bonagamba TJ; Arnold K; Huster D
    Magn Reson Chem; 2004 Feb; 42(2):276-84. PubMed ID: 14745808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.
    Somashekar BS; Nagana Gowda GA; Ramesha AR; Khetrapal CL
    Magn Reson Chem; 2004 Jul; 42(7):636-40. PubMed ID: 15181634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of protein reorientational diffusion in solution by 13C off-resonance rotating frame spin-lattice relaxation: effect of polydispersity.
    Morgan CF; Schleich T; Caines GH
    Biopolymers; 1990 Feb; 29(3):501-7. PubMed ID: 2331512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions.
    Yilmaz A; Budak H; Ulak FS
    Magn Reson Imaging; 2008 Feb; 26(2):254-60. PubMed ID: 17683891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of the dynamic structure of globular proteins using impulse methods of nuclear magnetic resonance].
    Aksenov SI
    Mol Biol (Mosk); 1983; 17(3):475-83. PubMed ID: 6877229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A faster way to characterize by triple-quantum-filtered (17)O NMR water molecules strongly bound to macromolecules in solution.
    Lehoux A; Krzystyniak M; Baguet E
    J Magn Reson; 2001 Jan; 148(1):11-22. PubMed ID: 11133271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dynamics of cytochalasin B in solution as detected by 13C and 1H NMR relaxation rates.
    Gaggelli E; Maccotta A; Scopa A; Valensin G
    Biophys Chem; 1988 Dec; 32(2-3):297-303. PubMed ID: 3251573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.