BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8914148)

  • 1. [Hemodynamic simulation study of cerebral arteriovenous malformations: changes of wall stress and early detection of NPPB].
    Nagasawa S; Kawanishi M; Yamaguchi K; Tada H; Kajimoto S; Kajimoto Y; Tanaka H; Ohta T
    No Shinkei Geka; 1996 Oct; 24(10):897-903. PubMed ID: 8914148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic simulation study of cerebral arteriovenous malformations. Part 2. Effects of impaired autoregulation and induced hypotension.
    Nagasawa S; Kawanishi M; Kondoh S; Kajimoto S; Yamaguchi K; Ohta T
    J Cereb Blood Flow Metab; 1996 Jan; 16(1):162-9. PubMed ID: 8530549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of intracranial arteriovenous malformations on cerebral hemodynamics.
    Kader A; Young WL
    Neurosurg Clin N Am; 1996 Oct; 7(4):767-81. PubMed ID: 8905788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical model of cerebral hemodynamics: application to the study of arteriovenous malformations.
    Gao E; Young WL; Ornstein E; Pile-Spellman J; Ma Q
    J Cereb Blood Flow Metab; 1997 Aug; 17(8):905-18. PubMed ID: 9290588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Surgery of high-flow arteriovenous malformation: with special reference to normal perfusion pressure breakthrough phenomenon].
    Yamada K; Hayakawa T; Yoshimine T; Nakao K; Ushio Y; Mogami H
    No Shinkei Geka; 1986 May; 14(6):741-8. PubMed ID: 3748283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous real-time visualization of the human cerebral microcirculation during arteriovenous malformation surgery using orthogonal polarization spectral imaging.
    Pennings FA; Ince C; Bouma GJ
    Neurosurgery; 2006 Jul; 59(1):167-71; discussion 167-71. PubMed ID: 16823313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery.
    Lo EH
    Int J Radiat Oncol Biol Phys; 1993 Sep; 27(2):353-61. PubMed ID: 8407410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the hemodynamic characteristics of brain arteriovenous malformations using electrical models: baseline settings, surgical extirpation, endovascular embolization, and surgical bypass.
    Guglielmi G
    Neurosurgery; 2008 Jul; 63(1):1-10; discussion 11. PubMed ID: 18728563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic cerebral hypoperfusion and reperfusion injury of restoration of normal perfusion pressure contributes to the neuropathological changes in rat brain.
    Hai J; Lin Q; Li ST; Pan QG
    Brain Res Mol Brain Res; 2004 Jul; 126(2):137-45. PubMed ID: 15249137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norepinephrine and cerebral blood flow regulation in patients with arteriovenous malformations.
    Stüer C; Ikeda T; Stoffel M; Luippold G; Sakowitz O; Schaller K; Meyer B
    Neurosurgery; 2008 Jun; 62(6):1254-60; discussion 1260-1. PubMed ID: 18824991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics.
    Hademenos GJ; Massoud TF; Viñuela F
    Neurosurgery; 1996 May; 38(5):1005-14; discussion 1014-5. PubMed ID: 8727827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal perfusion pressure hyperperfusion in cerebral arteriovenous malformation surgery: model study on the hemodynamics and mechanisms.
    Nagasawa S; Kawanishi M; Kondoh S; Yamaguchi K; Kajimoto S; Tada Y; Ohta T
    J Clin Neurosci; 1998 Mar; 5 Suppl():30-2. PubMed ID: 18639096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haemodynamic study of arteriovenous malformations using a hydraulic model.
    Nagasawa S; Kawanishi M; Tanaka H; Ohta T; Nagayasu S; Kikuchi H
    Neurol Res; 1993 Dec; 15(6):409-12. PubMed ID: 7907410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occlusive hyperemia versus normal perfusion pressure breakthrough after treatment of cranial arteriovenous malformations.
    Zacharia BE; Bruce S; Appelboom G; Connolly ES
    Neurosurg Clin N Am; 2012 Jan; 23(1):147-51. PubMed ID: 22107865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental compartmental flow model for assessing the hemodynamic response of intracranial arteriovenous malformations to stereotactic radiosurgery.
    Lo EH; Fabrikant JI; Levy RP; Phillips MH; Frankel KA; Alpen EL
    Neurosurgery; 1991 Feb; 28(2):251-9. PubMed ID: 1997894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model.
    Price RJ; Skalak TC
    Microvasc Res; 1994 Mar; 47(2):188-202. PubMed ID: 8022319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters.
    Levegrün S; Hof H; Essig M; Schlegel W; Debus J
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):796-808. PubMed ID: 15183483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.