These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8914148)

  • 61. [Hemodynamic consequences caused by the vascular short-circuit in arteriovenous malformations of the brain in man].
    Pertuiset B; Ancri D
    Bull Acad Natl Med; 1986 Jan; 170(1):33-42. PubMed ID: 3527350
    [No Abstract]   [Full Text] [Related]  

  • 62. Relationship of nidal vessel radius and wall thickness to brain arteriovenous malformation hemorrhage.
    Quick CM; James DJ; Ning K; Joshi S; Halim AX; Hashimoto T; Young WL
    Neurol Res; 2002 Jul; 24(5):495-500. PubMed ID: 12117322
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Systemic vascular reactions to a decrease in volumetric blood flow velocity during artificial circulation].
    Orlov VV; Osadchiĭ LI; Pugovkin AP; Sergeev IV; Khropycheva RP
    Fiziol Zh SSSR Im I M Sechenova; 1982 Jan; 68(1):72-8. PubMed ID: 7060808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lack of flow regulation may explain the development of arteriovenous malformations.
    Quick CM; Hashimoto T; Young WL
    Neurol Res; 2001 Sep; 23(6):641-4. PubMed ID: 11547934
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural determinants of vascular resistance properties in hypertension. Haemodynamic and model analysis.
    Korner PI; Angus JA
    J Vasc Res; 1992; 29(4):293-312. PubMed ID: 1391553
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Large-scale ensemble simulations of biomathematical brain arteriovenous malformation models using graphics processing unit computation.
    Jain MS; Do HM; Wintermark M; Massoud TF
    Comput Biol Med; 2019 Oct; 113():103416. PubMed ID: 31494430
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Revisiting normal perfusion pressure breakthrough in light of hemorrhage-induced vasospasm.
    Alexander MD; Connolly ES; Meyers PM
    World J Radiol; 2010 Jun; 2(6):230-2. PubMed ID: 21160635
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preoperative evaluation of hemodynamic factors in cerebral arteriovenous malformations for selection of a radical surgery tactic with special reference to vascular autoregulation disorders.
    Pertuiset B; Ancri D; Clergue F
    Neurol Res; 1982; 4(3-4):209-33. PubMed ID: 6129588
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Normal perfusion pressure breakthrough theory.
    Spetzler RF; Wilson CB; Weinstein P; Mehdorn M; Townsend J; Telles D
    Clin Neurosurg; 1978; 25():651-72. PubMed ID: 710017
    [No Abstract]   [Full Text] [Related]  

  • 70. Numerical modeling of vessel geometry to measure hemodynamics parameters non-invasively in cerebral arteriovenous malformation.
    Kumar YK; Mehta SB; Ramachandra M
    Biomed Mater Eng; 2016; 27(6):613-631. PubMed ID: 28234245
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The paradoxical blood pressure-flow relationship in the brain with an arteriovenous malformation.
    Taneda M; Hayakawa T
    Surg Neurol; 1993 Nov; 40(5):390-4. PubMed ID: 8211655
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deliberate systemic hypotension to facilitate endovascular therapy of cerebral arteriovenous malformations: a computer modeling study.
    Gao E; Young WL; Pile-Spellman J; Ornstein E; Ma Q
    Neurosurg Focus; 1997 Jun; 2(6):e3. PubMed ID: 15099050
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental rat model of chronic cerebral hypoperfusion-reperfusion mimicking normal perfusion pressure breakthrough phenomenon.
    Revuelta JM; Zamarrón Á; Fortes J; Rodríguez-Boto G; Vaquero J; Gutiérrez-González R
    Neurocirugia (Astur : Engl Ed); 2020; 31(5):209-215. PubMed ID: 31948841
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [A method for determining the hemodynamic behavior of the liver in vitro].
    Röder F; Otto G; Wolff H
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(1):20-6. PubMed ID: 6344471
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Normal perfusion pressure breakthrough phenomenon: experimental models.
    Gutiérrez-González R; Pérez-Zamarron A; Rodríguez-Boto G
    Neurosurg Rev; 2014 Oct; 37(4):559-67. PubMed ID: 24777643
    [TBL] [Abstract][Full Text] [Related]  

  • 76. AVM modelling by multi-branching tube flow: large flow rates and dual solutions.
    Smith FT; Jones MA
    Math Med Biol; 2003 Jun; 20(2):183-204. PubMed ID: 14636028
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 'Structural autoregulation'--the local adaptation of vascular beds to chronic changes in pressure.
    Folkow B
    Ciba Found Symp; 1983; 100():56-79. PubMed ID: 6557900
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A study of the reactivity of feeding vessels to arteriovenous malformations: correlation with clinical outcome.
    Muraszko K; Wang HH; Pelton G; Stein BM
    Neurosurgery; 1990 Feb; 26(2):190-9; discussion 199-200. PubMed ID: 2308666
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Determinants of vascular hemodynamic characteristics.
    Mulvany MJ
    Hypertension; 1984; 6(6 Pt 2):III13-8. PubMed ID: 6519753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Model-based prediction of autoregulatory exhaustion in response to lower-body negative pressure-induced shock.
    Puyana JC; Pinsky M; Leuenberger U; Berkow J
    J Trauma Acute Care Surg; 2013 Aug; 75(2 Suppl 2):S190-6. PubMed ID: 23883907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.