These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8914148)

  • 81. Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
    Pries AR; Secomb TW; Gaehtgens P
    Hypertension; 1999 Jan; 33(1):153-61. PubMed ID: 9931096
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cerebral perfusion under pressure: is the autoregulatory 'plateau' a level playing field for all?
    Sanders RD; Degos V; Young WL
    Anaesthesia; 2011 Nov; 66(11):968-72. PubMed ID: 21933160
    [No Abstract]   [Full Text] [Related]  

  • 83. [Pathogenic role of intracellular energy insufficiency (hypoenergy) in the development of circulatory collapse (hemodynamic shock)].
    Kovac Z
    Lijec Vjesn; 1995 Jun; 117 Suppl 2():11-5. PubMed ID: 8649138
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Postoperative management with dexmedetomidine in a pregnant patient who underwent AVM nidus removal: a case report.
    Kitsiripant C; Kamata K; Kanamori R; Yamaguchi K; Ozaki M; Nomura M
    JA Clin Rep; 2017; 3(1):17. PubMed ID: 29457061
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Mathematical modeling of AVM physiology using compartmental network analysis: theoretical considerations and preliminary in vivo validation using a previously developed animal model.
    Kailasnath P; Chaloupka JC
    Neurol Res; 1996 Aug; 18(4):361-6. PubMed ID: 8875457
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Shear stress is not sufficient to control growth of vascular networks: a model study.
    Hacking WJ; VanBavel E; Spaan JA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H364-75. PubMed ID: 8769773
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structural factors: the vascular wall. Consequences of treatment.
    Folkow B
    Hypertension; 1983; 5(5 Pt 2):III58-62. PubMed ID: 6629463
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Decrease by theophylline of the autoregulatory capacity of the cerebral vessels].
    Lang R; Zimmer R; Oberdörster G
    Pflugers Arch; 1972; 332():Suppl 332:R58. PubMed ID: 5065826
    [No Abstract]   [Full Text] [Related]  

  • 89. Dynamic Autoregulation Testing Does Not Indicate Changes of Cerebral Blood Flow Before and After Resection of Small- and Medium-Sized Cerebral AVM.
    Stüer C; Ikeda T; Stoffel M; Schaller C; Meyer B
    Transl Stroke Res; 2011 Mar; 2(1):60-6. PubMed ID: 24323585
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Modifications of the hemodynamic parameters induced by variations of the distributed vascular resistances simulated on an experimental model with increased constant general pressure].
    Cortinovis A; Crippa A
    Chir Patol Sper; 1976 Feb; 24(1):52-73. PubMed ID: 964094
    [No Abstract]   [Full Text] [Related]  

  • 91. A mechanism for injury through cerebral arteriole inflation.
    Dagro AM; Ramesh KT
    Biomech Model Mechanobiol; 2019 Jun; 18(3):651-663. PubMed ID: 30604301
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Model of structural and functional adaptation of small conductance vessels to arterial hypotension.
    Quick CM; Young WL; Leonard EF; Joshi S; Gao E; Hashimoto T
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1645-53. PubMed ID: 11009451
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Autoregulation of blood flow drives early hypotension in a rat model of systemic inflammation induced by bacterial lipopolysaccharide.
    Moretti EH; Rodrigues AC; Marques BV; Totola LT; Ferreira CB; Brito CF; Matos CM; da Silva FA; Santos RAS; Lopes LB; Moreira TS; Akamine EH; Baccala LA; Fujita A; Steiner AA
    PNAS Nexus; 2023 Feb; 2(2):pgad014. PubMed ID: 36874271
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A revised concept of the congenital nature of cerebral arteriovenous malformations.
    Lasjaunias P
    Interv Neuroradiol; 1997 Dec; 3(4):275-81. PubMed ID: 20678357
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Computer simulation of Cerebral Arteriovenous Malformation-validation analysis of hemodynamics parameters.
    Kumar YK; Mehta SB; Ramachandra M
    PeerJ; 2017; 5():e2724. PubMed ID: 28149675
    [TBL] [Abstract][Full Text] [Related]  

  • 96. SOME MATHEMATICAL FORMS OF AUTOREGULATORY MODELS.
    KOCH AR
    Circ Res; 1964 Aug; 15():SUPPL:269-78. PubMed ID: 14206314
    [No Abstract]   [Full Text] [Related]  

  • 97. The long-term postoperative trinitroglycerin hypotension in normal perfusion pressure breakthrough syndrome.
    Orsi P; Visentin PP; Salvati M; Mastronardi L; Ferrante L
    J Neurosurg Anesthesiol; 1990 Dec; 2(4):305-7. PubMed ID: 15815368
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mechanical vasoconstriction for a cerebral myogenic autoregulatory model.
    Stan E; McNames J; Kohles SS; Biber C; Biberic N; Leech N; Mangan RW; McKinney TJ; Surdu M; Goldstein B
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():883-6. PubMed ID: 17271819
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Hemodynamic simulation study of cerebral arteriovenous malformations: changes of wall stress and early detection of NPPB].
    Nagasawa S; Kawanishi M; Yamaguchi K; Tada H; Kajimoto S; Kajimoto Y; Tanaka H; Ohta T
    No Shinkei Geka; 1996 Oct; 24(10):897-903. PubMed ID: 8914148
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Hemodynamic simulation study of cerebral arteriovenous malformations. Part 2. Effects of impaired autoregulation and induced hypotension.
    Nagasawa S; Kawanishi M; Kondoh S; Kajimoto S; Yamaguchi K; Ohta T
    J Cereb Blood Flow Metab; 1996 Jan; 16(1):162-9. PubMed ID: 8530549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.