BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 8914163)

  • 1. Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis.
    Han Y; Solé NA; Tejbrant J; Barany G
    Pept Res; 1996; 9(4):166-73. PubMed ID: 8914163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-phase synthesis of peptides with C-terminal asparagine or glutamine. An effective, mild procedure based on N alpha-fluorenylmethyloxycarbonyl (Fmoc) protection and side-chain anchoring to a tris(alkoxy)benzylamide (PAL) handle.
    Albericio F; van Abel R; Barany G
    Int J Pept Protein Res; 1990 Mar; 35(3):284-6. PubMed ID: 2354880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incomplete TFA deprotection of N-terminal trityl-asparagine residue in fmoc solid-phase peptide chemistry.
    Friede M; Denery S; Neimark J; Kieffer S; Gausepohl H; Briand JP
    Pept Res; 1992; 5(3):145-7. PubMed ID: 1421802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asparagine coupling in Fmoc solid phase peptide synthesis.
    Gausepohl H; Kraft M; Frank RW
    Int J Pept Protein Res; 1989 Oct; 34(4):287-94. PubMed ID: 2599767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple synthesis by the multipin method as a methodological tool.
    Bray AM; Valerio RM; DiPasquale AJ; Greig J; Maeji NJ
    J Pept Sci; 1995; 1(1):80-7. PubMed ID: 9222986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aspartimide problem in Fmoc-based SPPS. Part I.
    Mergler M; Dick F; Sax B; Weiler P; Vorherr T
    J Pept Sci; 2003 Jan; 9(1):36-46. PubMed ID: 12587881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-(N-Fmoc)-3-(N-Boc-N-methoxy)-diaminopropanoic acid, an amino acid for the synthesis of mimics of O-linked glycopeptides.
    Carrasco MR; Brown RT; Doan VH; Kandel SM; Lee FC
    Biopolymers; 2006; 84(4):414-20. PubMed ID: 16508952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase synthesis of "mixed" peptidomimetics using Fmoc-protected aza-beta3-amino acids and alpha-amino acids.
    Busnel O; Bi L; Dali H; Cheguillaume A; Chevance S; Bondon A; Muller S; Baudy-Floc'h M
    J Org Chem; 2005 Dec; 70(26):10701-8. PubMed ID: 16355988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular pyrophosphate formation during N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of peptides containing adjacent phosphotyrosine residues.
    Ottinger EA; Xu Q; Barany G
    Pept Res; 1996; 9(5):223-8. PubMed ID: 9000247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HBTU activation for automated Fmoc solid-phase peptide synthesis.
    Fields CG; Lloyd DH; Macdonald RL; Otteson KM; Noble RL
    Pept Res; 1991; 4(2):95-101. PubMed ID: 1815783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-resin native chemical ligation for cyclic peptide synthesis.
    Tulla-Puche J; Barany G
    J Org Chem; 2004 Jun; 69(12):4101-7. PubMed ID: 15176835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of crown ethers in peptide chemistry-V. Solid-phase synthesis of peptides by the fragment condensation approach using crown ethers as non-covalent protecting groups.
    Botti P; Ball HL; Lucietto P; Pinori M; Rizzi E; Mascagni P
    J Pept Sci; 1996; 2(6):371-80. PubMed ID: 9230465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.
    Barlos K; Chatzi O; Gatos D; Stavropoulos G
    Int J Pept Protein Res; 1991 Jun; 37(6):513-20. PubMed ID: 1917309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry.
    Fields CG; VanDrisse VL; Fields GB
    Pept Res; 1993; 6(1):39-47. PubMed ID: 8439735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Methyltrityl (Mtt): a new protecting group for the side chain protection of Asn and Gln in solid-phase peptide synthesis.
    Sax B; Dick F; Tanner R; Gosteli J
    Pept Res; 1992; 5(4):245-6. PubMed ID: 1421811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.