These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 8914266)
21. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Thao ML; Baumann P Curr Microbiol; 2004 Feb; 48(2):140-4. PubMed ID: 15057483 [TBL] [Abstract][Full Text] [Related]
22. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Akhurst RJ; Mourant RG; Baud L; Boemare NE Int J Syst Bacteriol; 1996 Oct; 46(4):1034-41. PubMed ID: 8863433 [TBL] [Abstract][Full Text] [Related]
24. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Cimen H; Touray M; Gulsen SH; Hazir S Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692 [TBL] [Abstract][Full Text] [Related]
25. Refining the Natural Product Repertoire in Entomopathogenic Bacteria. Tobias NJ; Shi YM; Bode HB Trends Microbiol; 2018 Oct; 26(10):833-840. PubMed ID: 29801772 [TBL] [Abstract][Full Text] [Related]
26. The bacterium associated with the entomopathogenic nematode Steinernema abbasi (Nematoda: Steinernematidae) isolated from Taiwan. Tsai MH; Tang LC; Hou RF J Invertebr Pathol; 2008 Oct; 99(2):242-5. PubMed ID: 18486948 [TBL] [Abstract][Full Text] [Related]
27. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. Chen G; Zhang Y; Li J; Dunphy GB; Punja ZK; Webster JM J Invertebr Pathol; 1996 Sep; 68(2):101-8. PubMed ID: 8858906 [TBL] [Abstract][Full Text] [Related]
28. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970 [TBL] [Abstract][Full Text] [Related]
29. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739 [TBL] [Abstract][Full Text] [Related]
30. Abd El-Raheem AM; Abdelazeem Elmasry AM; Elbrense H; Vergara-Pineda S Pak J Biol Sci; 2022 Jun; 25(7):586-601. PubMed ID: 36098165 [TBL] [Abstract][Full Text] [Related]
31. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Sorfová P; Skeríková A; Hypsa V Syst Appl Microbiol; 2008 Jun; 31(2):88-100. PubMed ID: 18485654 [TBL] [Abstract][Full Text] [Related]
32. Pseudocitrobacter gen. nov., a novel genus of the Enterobacteriaceae with two new species Pseudocitrobacter faecalis sp. nov., and Pseudocitrobacter anthropi sp. nov, isolated from fecal samples from hospitalized patients in Pakistan. Kämpfer P; Glaeser SP; Raza MW; Abbasi SA; Perry JD Syst Appl Microbiol; 2014 Feb; 37(1):17-22. PubMed ID: 24182752 [TBL] [Abstract][Full Text] [Related]
33. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Bonifassi E; Fischer-Le Saux M; Boemare N; Lanois A; Laumond C; Smart G J Invertebr Pathol; 1999 Sep; 74(2):164-72. PubMed ID: 10486229 [TBL] [Abstract][Full Text] [Related]
34. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Dauga C Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):531-47. PubMed ID: 11931166 [TBL] [Abstract][Full Text] [Related]
35. The role of Photorhabdus-induced bioluminescence and red cadaver coloration on the deterrence of insect scavengers from entomopathogenic nematode-infected cadavers. Cimen H J Invertebr Pathol; 2023 Feb; 196():107871. PubMed ID: 36493844 [TBL] [Abstract][Full Text] [Related]
36. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Goodrich-Blair H; Clarke DJ Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120 [TBL] [Abstract][Full Text] [Related]
37. Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Kuwata R; Yoshiga T; Yoshida M; Kondo E Microbes Infect; 2008 Jun; 10(7):734-41. PubMed ID: 18538616 [TBL] [Abstract][Full Text] [Related]
38. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. Abebe-Akele F; Tisa LS; Cooper VS; Hatcher PJ; Abebe E; Thomas WK BMC Genomics; 2015 Jul; 16(1):531. PubMed ID: 26187596 [TBL] [Abstract][Full Text] [Related]
39. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Chacón-Orozco JG; Bueno CJ; Shapiro-Ilan DI; Hazir S; Leite LG; Harakava R Sci Rep; 2020 Nov; 10(1):20649. PubMed ID: 33244079 [TBL] [Abstract][Full Text] [Related]
40. Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Hérault and Gard (Southern France). Emelianoff V; Le Brun N; Pagès S; Stock SP; Tailliez P; Moulia C; Sicard M J Invertebr Pathol; 2008 Jun; 98(2):211-7. PubMed ID: 18353356 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]