These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8914308)

  • 21. [Characteristic of distortion product otoacoustic emissions for preterm newborn].
    Zhang H; Guo M; Li Y
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2004 Jan; 18(1):23-6. PubMed ID: 15088346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio.
    Harris FP; Lonsbury-Martin BL; Stagner BB; Coats AC; Martin GK
    J Acoust Soc Am; 1989 Jan; 85(1):220-9. PubMed ID: 2921404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears.
    Konrad-Martin D; Neely ST; Keefe DH; Dorn PA; Gorga MP
    J Acoust Soc Am; 2001 Jun; 109(6):2862-79. PubMed ID: 11425129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs.
    Goodman SS; Withnell RH; De Boer E; Lilly DJ; Nuttall AL
    Hear Res; 2004 Feb; 188(1-2):57-69. PubMed ID: 14759571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distortion-product otoacoustic emissions in ears with normal hearing sensitivity: test-retest variability.
    Hallenbeck H; Dancer J
    Percept Mot Skills; 2003 Dec; 97(3 Pt 1):990-2. PubMed ID: 14738368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of human acoustic distortion product: dual origin of 2f1-f2.
    Gaskill SA; Brown AM
    J Acoust Soc Am; 1996 Nov; 100(5):3268-74. PubMed ID: 8914309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Acoustic distortion products. Clinical values and limitations in the study of low frequencies].
    Bonfils P; Avan P; Jouffre V; François M; Trotoux J; Narcy P
    Ann Otolaryngol Chir Cervicofac; 1991; 108(7):425-30; discussion 431. PubMed ID: 1789616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distortion product otoacoustic emissions in human newborns and adults. I. Frequency effects.
    Lasky RE
    J Acoust Soc Am; 1998 Feb; 103(2):981-91. PubMed ID: 9479751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of distortion product phase in the ear canal of the cat.
    Fahey PF; Allen JB
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2880-91. PubMed ID: 9373975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distortion products in auditory fMRI research: Measurements and solutions.
    Norman-Haignere S; McDermott JH
    Neuroimage; 2016 Apr; 129():401-413. PubMed ID: 26827809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space.
    Whitehead ML; Stagner BB; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2359-77. PubMed ID: 7714255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the fine structure of the 2f1-f2 acoustic distortion product. I. Model development.
    Sun XM; Schmiedt RA; He NJ; Lam CF
    J Acoust Soc Am; 1994 Oct; 96(4):2166-74. PubMed ID: 7963030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A second cochlear-frequency map that correlates distortion product and neural tuning measurements.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):809-16. PubMed ID: 8370887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.