These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8914317)

  • 61. Phonatory Strategies of Male Vocalists in Singing Diatonic Scales With Various Dynamic Shapings.
    Vurma A
    J Voice; 2017 Mar; 31(2):254.e17-254.e29. PubMed ID: 27469449
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Voice source characteristics in six premier country singers.
    Sundberg J; Cleveland TF; Stone RE; Iwarsson J
    J Voice; 1999 Jun; 13(2):168-83. PubMed ID: 10442748
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Using electroglottographic real-time feedback to control posterior glottal adduction during phonation.
    Herbst CT; Howard D; Schlömicher-Thier J
    J Voice; 2010 Jan; 24(1):72-85. PubMed ID: 19185453
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes in glottal contact quotient during resonance tube phonation and phonation with vibrato.
    Guzman M; Rubin A; Muñoz D; Jackson-Menaldi C
    J Voice; 2013 May; 27(3):305-11. PubMed ID: 23490123
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Skewing of the glottal flow with respect to the glottal area measured in natural production of vowels.
    Alku P; Murtola T; Malinen J; Geneid A; Vilkman E
    J Acoust Soc Am; 2019 Oct; 146(4):2501. PubMed ID: 31671985
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of maximum flow declination rate: children versus adults.
    Sapienza CM; Stathopoulos ET
    J Voice; 1994 Sep; 8(3):240-7. PubMed ID: 7987426
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of aerodynamic and electroglottographic parameters in evaluating clinically relevant voicing patterns.
    Peterson KL; Verdolini-Marston K; Barkmeier JM; Hoffman HT
    Ann Otol Rhinol Laryngol; 1994 May; 103(5 Pt 1):335-46. PubMed ID: 8179248
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An amplitude quotient based method to analyze changes in the shape of the glottal pulse in the regulation of vocal intensity.
    Alku P; Airas M; Björkner E; Sundberg J
    J Acoust Soc Am; 2006 Aug; 120(2):1052-62. PubMed ID: 16938991
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Analysis of Glottal Inverse Filtering in the Presence of Source-Filter Interaction.
    Palaparthi A; Titze IR
    Speech Commun; 2020 Oct; 123():98-108. PubMed ID: 32921855
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
    Titze IR
    J Acoust Soc Am; 2015 Jan; 137(1):502-4. PubMed ID: 25618080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparison of two inverse filtering methods in parameterization of the glottal closing phase characteristics in different phonation types.
    Lehto L; Airas M; Björkner E; Sundberg J; Alku P
    J Voice; 2007 Mar; 21(2):138-50. PubMed ID: 16478660
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glottal area waveform analysis of benign vocal fold lesions before and after surgery.
    Noordzij JP; Woo P
    Ann Otol Rhinol Laryngol; 2000 May; 109(5):441-6. PubMed ID: 10823471
    [TBL] [Abstract][Full Text] [Related]  

  • 75. How do laryngeal and respiratory functions contribute to differentiate actors/actresses and untrained voices?
    Master S; Guzman M; Azócar MJ; Muñoz D; Bortnem C
    J Voice; 2015 May; 29(3):333-45. PubMed ID: 25795357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Modeling the glottal volume-velocity waveform for three voice types.
    Childers DG; Ahn C
    J Acoust Soc Am; 1995 Jan; 97(1):505-19. PubMed ID: 7860829
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Voice source differences between registers in female musical theater singers.
    Björkner E; Sundberg J; Cleveland T; Stone E
    J Voice; 2006 Jun; 20(2):187-97. PubMed ID: 16051463
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effects of frequency and intensity level on glottal closure in normal subjects.
    Sulter AM; Albers FW
    Clin Otolaryngol Allied Sci; 1996 Aug; 21(4):324-7. PubMed ID: 8889298
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.