These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 8914322)
1. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Sheng J; Citovsky V Plant Cell; 1996 Oct; 8(10):1699-710. PubMed ID: 8914322 [No Abstract] [Full Text] [Related]
2. Finding a way to the nucleus. Gelvin SB Curr Opin Microbiol; 2010 Feb; 13(1):53-8. PubMed ID: 20022799 [TBL] [Abstract][Full Text] [Related]
3. Exploring cargo transport mechanics in the type IV secretion systems. Li J; Wolf SG; Elbaum M; Tzfira T Trends Microbiol; 2005 Jul; 13(7):295-8. PubMed ID: 15923116 [TBL] [Abstract][Full Text] [Related]
5. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Bakó L; Umeda M; Tiburcio AF; Schell J; Koncz C Proc Natl Acad Sci U S A; 2003 Aug; 100(17):10108-13. PubMed ID: 12900506 [TBL] [Abstract][Full Text] [Related]
6. Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Lacroix B; Loyter A; Citovsky V Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15429-34. PubMed ID: 18832163 [TBL] [Abstract][Full Text] [Related]
7. Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Pantoja M; Chen L; Chen Y; Nester EW Mol Microbiol; 2002 Sep; 45(5):1325-35. PubMed ID: 12207700 [TBL] [Abstract][Full Text] [Related]
11. [VirD2-independent, but MobA-dependent transfer of plasmid DNA from a broad circle of hosts from agrobacterium into the plant cell nucleus]. Shadenkov AA; Kovaleva MV; Kuz'min EV; Uzbekova SV; Shemiakin MF Mol Biol (Mosk); 1996; 30(2):454-60. PubMed ID: 8724778 [No Abstract] [Full Text] [Related]
12. The genetic and chemical basis of recognition in the Agrobacterium: plant interaction. Binns AN; Howitz VR Curr Top Microbiol Immunol; 1994; 192():119-38. PubMed ID: 7859503 [No Abstract] [Full Text] [Related]
13. Biological systems of the host cell involved in Agrobacterium infection. Citovsky V; Kozlovsky SV; Lacroix B; Zaltsman A; Dafny-Yelin M; Vyas S; Tovkach A; Tzfira T Cell Microbiol; 2007 Jan; 9(1):9-20. PubMed ID: 17222189 [TBL] [Abstract][Full Text] [Related]
15. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Farrand SK; Qin Y; Oger P Methods Enzymol; 2002; 358():452-84. PubMed ID: 12474406 [No Abstract] [Full Text] [Related]
16. Nucleic acid transport in plant-pathogen interactions. Lartey R; Citovsky V Genet Eng (N Y); 1997; 19():201-14. PubMed ID: 9193110 [TBL] [Abstract][Full Text] [Related]
17. Odyssey of agrobacterium T-DNA. Ziemienowicz A Acta Biochim Pol; 2001; 48(3):623-35. PubMed ID: 11833771 [TBL] [Abstract][Full Text] [Related]
18. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. Baron C; Domke N; Beinhofer M; Hapfelmeier S J Bacteriol; 2001 Dec; 183(23):6852-61. PubMed ID: 11698374 [TBL] [Abstract][Full Text] [Related]
20. [6b genes: the important effective factors relative to tumor formation in plants]. Jin YK; Liu CL; Ruan Y Yi Chuan; 2011 Nov; 33(11):1212-8. PubMed ID: 22120076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]