BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 8914510)

  • 1. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes.
    Jiang J; Hulbert SH; Gill BS; Ward DC
    Mol Gen Genet; 1996 Oct; 252(5):497-502. PubMed ID: 8914510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei.
    Trask BJ; Massa H; Kenwrick S; Gitschier J
    Am J Hum Genet; 1991 Jan; 48(1):1-15. PubMed ID: 1985451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification.
    Khrustaleva LI; Kik C
    Plant J; 2001 Mar; 25(6):699-707. PubMed ID: 11319036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence in situ hybridization on plant extended chromatin DNA fibers for single-copy and repetitive DNA sequences.
    Yang K; Zhang H; Converse R; Wang Y; Rong X; Wu Z; Luo B; Xue L; Jian L; Zhu L; Wang X
    Plant Cell Rep; 2011 Sep; 30(9):1779-86. PubMed ID: 21695528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation.
    Koo DH; Jiang J
    Plant J; 2009 Aug; 59(3):509-16. PubMed ID: 19392688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine mapping of the human MHC class II region within chromosome band 6p21 and evaluation of probe ordering using interphase fluorescence in situ hybridization.
    Senger G; Ragoussis J; Trowsdale J; Sheer D
    Cytogenet Cell Genet; 1993; 64(1):49-53. PubMed ID: 8508679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates.
    Ma L; Wu SM; Huang J; Ding Y; Pang DW; Li L
    Chromosoma; 2008 Apr; 117(2):181-7. PubMed ID: 18046569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes.
    Bustamante FO; Aliyeva-Schnorr L; Fuchs J; Beier S; Houben A
    Cytogenet Genome Res; 2017; 152(2):90-96. PubMed ID: 28719910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model.
    van den Engh G; Sachs R; Trask BJ
    Science; 1992 Sep; 257(5075):1410-2. PubMed ID: 1388286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ hybridization to metaphase chromosomes and interphase nuclei.
    Knoll JH; Lichter P
    Curr Protoc Hum Genet; 2005 May; Chapter 4():Unit 4.3. PubMed ID: 18428378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin.
    Heng HH; Squire J; Tsui LC
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9509-13. PubMed ID: 1384055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes.
    Lamb JC; Danilova T; Bauer MJ; Meyer JM; Holland JJ; Jensen MD; Birchler JA
    Genetics; 2007 Mar; 175(3):1047-58. PubMed ID: 17237520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interphase and metaphase resolution of different distances within the human dystrophin gene.
    Lawrence JB; Singer RH; McNeil JA
    Science; 1990 Aug; 249(4971):928-32. PubMed ID: 2203143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes.
    Jiang J; Gill BS; Wang GL; Ronald PC; Ward DC
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4487-91. PubMed ID: 7753830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical mapping of chromosome 17 cosmids by fluorescence in situ hybridization and digital image analysis.
    Kallioniemi OP; Kallioniemi A; Mascio L; Sudar D; Pinkel D; Deaven L; Gray J
    Genomics; 1994 Mar; 20(1):125-8. PubMed ID: 8020940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordering markers in the region of the ataxia-telangiectasia gene (11q22-q23) by fluorescence in situ hybridization (FISH) to interphase nuclei.
    Cherif D; Der-Sarkissian H; Berger R
    Hum Genet; 1994 Jan; 93(1):1-6. PubMed ID: 8270247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH.
    Karafiátová M; Bartoš J; Doležel J
    Methods Mol Biol; 2016; 1429():49-64. PubMed ID: 27511166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of aneuploidy involving chromosomes 13, 18, or 21, by fluorescence in situ hybridization (FISH) to interphase and metaphase amniocytes.
    Kuo WL; Tenjin H; Segraves R; Pinkel D; Golbus MS; Gray J
    Am J Hum Genet; 1991 Jul; 49(1):112-9. PubMed ID: 2063863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the chromosome 17 patterns of FISH in interphase nuclei: an in-depth analysis of the HER2 amplicon and chromosome 17 centromere by karyotyping, FISH and M-FISH in breast cancer cells.
    Rondón-Lagos M; Verdun Di Cantogno L; Rangel N; Mele T; Ramírez-Clavijo SR; Scagliotti G; Marchiò C; Sapino A
    BMC Cancer; 2014 Dec; 14():922. PubMed ID: 25481507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.