BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 8914854)

  • 1. Identification of CYP4A11 as the major lauric acid omega-hydroxylase in human liver microsomes.
    Powell PK; Wolf I; Lasker JM
    Arch Biochem Biophys; 1996 Nov; 335(1):219-26. PubMed ID: 8914854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of arachidonic acid to 20-hydroxy-5,8,11, 14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11.
    Powell PK; Wolf I; Jin R; Lasker JM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1327-36. PubMed ID: 9618440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein.
    Chaurasia CS; Alterman MA; Lu P; Hanzlik RP
    Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human liver lauric acid hydroxylase activities.
    Castle PJ; Merdink JL; Okita JR; Wrighton SA; Okita RT
    Drug Metab Dispos; 1995 Oct; 23(10):1037-43. PubMed ID: 8654190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4.
    Jin R; Koop DR; Raucy JL; Lasker JM
    Arch Biochem Biophys; 1998 Nov; 359(1):89-98. PubMed ID: 9799565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-450-dependent metabolism of lauric acid in alcoholic liver disease: comparison between rat liver and kidney microsomes.
    Amet Y; Lucas D; Zhang-Gouillon ZQ; French SW
    Alcohol Clin Exp Res; 1998 Apr; 22(2):455-62. PubMed ID: 9581653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human fatty acid omega-hydroxylase, CYP4A11: determination of complete genomic sequence and characterization of purified recombinant protein.
    Kawashima H; Naganuma T; Kusunose E; Kono T; Yasumoto R; Sugimura K; Kishimoto T
    Arch Biochem Biophys; 2000 Jun; 378(2):333-9. PubMed ID: 10860550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a cytochrome P-450 isozyme catalyzing bunitrolol 4-hydroxylation in liver microsomes of male rats.
    Suzuki T; Narimatsu S; Fujita S; Masubuchi Y; Umeda S; Imaoka S; Funae Y
    Drug Metab Dispos; 1992; 20(3):367-73. PubMed ID: 1355709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phenobarbital treatment and cytochrome P-450 inhibitors on the laurate omega- and (omega - 1)-hydroxylase activities of rat liver microsomes.
    Okita RT; Masters BS
    Drug Metab Dispos; 1980; 8(3):147-51. PubMed ID: 6104577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P450 4A1 fusion protein.
    Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1996 Oct; 334(1):59-66. PubMed ID: 8837739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omega- and (omega-1)-hydroxylation of lauric acid and arachidonic acid by rat renal cytochrome P-450.
    Imaoka S; Tanaka S; Funae Y
    Biochem Int; 1989 Apr; 18(4):731-40. PubMed ID: 2504167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4.
    Scheller U; Zimmer T; Kärgel E; Schunck WH
    Arch Biochem Biophys; 1996 Apr; 328(2):245-54. PubMed ID: 8645001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification from liver microsomes from untreated cynomolgus monkeys of cytochrome P450 closely related to human cytochrome P450 2B6.
    Ohmori S; Shirakawa C; Motohashi K; Yoshida H; Abe H; Nakamura T; Horie T; Kitagawa H; Asaoka K; Rikihisa T
    Mol Pharmacol; 1993 Feb; 43(2):183-90. PubMed ID: 8429823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations.
    Lasker JM; Wester MR; Aramsombatdee E; Raucy JL
    Arch Biochem Biophys; 1998 May; 353(1):16-28. PubMed ID: 9578596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme-coordinating analogs of lauric acid as inhibitors of fatty acid omega-hydroxylation.
    Lu P; Alterman MA; Chaurasia CS; Bambal RB; Hanzlik RP
    Arch Biochem Biophys; 1997 Jan; 337(1):1-7. PubMed ID: 8990261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation of lauramide diethanolamine by liver microsomes.
    Merdink J; Decosta K; Mathews JM; Jones CB; Okita JR; Okita RT
    Drug Metab Dispos; 1996 Feb; 24(2):180-6. PubMed ID: 8742229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inhibitors on omega- and (omega-1)-hydroxylation of lauric acid by frog liver microsomes.
    Miura Y
    Lipids; 1982 Dec; 17(12):864-9. PubMed ID: 6984479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lauric acid as a model substrate for the simultaneous determination of cytochrome P450 2E1 and 4A in hepatic microsomes.
    Clarke SE; Baldwin SJ; Bloomer JC; Ayrton AD; Sozio RS; Chenery RJ
    Chem Res Toxicol; 1994; 7(6):836-42. PubMed ID: 7696540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.