These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8915363)

  • 21. Possible involvement of [Ca2+]i level in the modulation of the current-voltage relationship for the fast Na+ current in late embryonic chick cardiomyocytes.
    Satoh H
    Gen Pharmacol; 1999 Mar; 32(3):335-9. PubMed ID: 10211588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bradykinin activates R-, T-, and L-type Ca2+ channels and induces a sustained increase of nuclear Ca2+ in aortic vascular smooth muscle cells.
    Bkaily G; Jaalouk D; Jacques D; Economos D; Hassan G; Simaan M; Regoli D; Pothier P
    Can J Physiol Pharmacol; 1997 Jun; 75(6):652-60. PubMed ID: 9276144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.
    Mayer EA; Loo DD; Snape WJ; Sachs G
    J Physiol; 1990 Jan; 420():47-71. PubMed ID: 1691293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+-dependent membrane currents in vascular smooth muscle cells of the rabbit.
    Bae YM; Kim KS; Park JK; Ko E; Ryu SY; Baek HJ; Lee SH; Ho WK; Earm YE
    Life Sci; 2001 Oct; 69(21):2451-66. PubMed ID: 11693254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles.
    Ulyanova AV; Shirokov RE
    PLoS One; 2018; 13(4):e0194980. PubMed ID: 29694371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Na(+)-Ca2+ exchange in the regulation of vascular smooth muscle tension.
    Motley ED; Paul RJ; Matlib MA
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1028-40. PubMed ID: 8386477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones.
    Carbone E; Lux HD; Carabelli V; Aicardi G; Zucker H
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):1-15. PubMed ID: 9350613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage- and Ca(2+)-activated ionic currents in acutely dissociated cells of the chick pineal gland.
    Henderson D; Dryer SE
    Brain Res; 1992 Feb; 572(1-2):182-9. PubMed ID: 1319269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of glibenclamide on cytosolic calcium concentrations and on contraction of the rabbit aorta.
    Yoshitake K; Hirano K; Kanaide H
    Br J Pharmacol; 1991 Jan; 102(1):113-8. PubMed ID: 1904292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of a novel vasodilator, LP-805, on cytosolic Ca2+ concentrations and on tension in rabbit isolated femoral arteries.
    Ushio-Fukai M; Hirano K; Kanaide H
    Br J Pharmacol; 1994 Dec; 113(4):1173-82. PubMed ID: 7889270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The role of calcium in the regulation of normal vascular tone and in arterial hypertension].
    Ramón de Berrazueta J
    Rev Esp Cardiol; 1999; 52 Suppl 3():25-33. PubMed ID: 10614146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production.
    Krautwurst D; Seifert R; Hescheler J; Schultz G
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):1025-35. PubMed ID: 1281979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lysophosphatidylcholine triggers intracellular calcium release and activation of non-selective cation channels in renal arterial smooth muscle cells.
    Jabr RI; Yamazaki J; Hume JR
    Pflugers Arch; 2000 Feb; 439(4):495-500. PubMed ID: 10678748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow inward tail currents in rabbit cardiac cells.
    Giles W; Shimoni Y
    J Physiol; 1989 Oct; 417():447-63. PubMed ID: 2621605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Ca2+]i-dependent actions of taurine in spontaneously beating rabbit sino-atrial nodal cells.
    Satoh H
    Eur J Pharmacol; 2001 Jul; 424(1):19-25. PubMed ID: 11470256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of resveratrol on isolated thoracic aorta rings of rats].
    Zhang HY; Xu CQ; Li HZ; Li BX; Zhang YQ; Zhang YN
    Zhongguo Zhong Yao Za Zhi; 2005 Aug; 30(16):1283-6. PubMed ID: 16245911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture.
    Nuss HB; Marban E
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):265-79. PubMed ID: 7799226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Possible mechanism of high calcium-induced relaxation of rabbit thoracic aorta.
    Yildirim S; Kamoy H; Demirel-Yilmaz E
    Gen Pharmacol; 1998 Mar; 30(3):347-50. PubMed ID: 9510085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current.
    Aggarwal R; Shorofsky SR; Goldman L; Balke CW
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):353-69. PubMed ID: 9423179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium/calcium exchange and the control of contractility in cardiac muscle and vascular smooth muscle.
    Blaustein MP
    J Cardiovasc Pharmacol; 1988; 12 Suppl 5():S56-68. PubMed ID: 2469880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.