BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8915454)

  • 1. Characteristics of compensatory hypertrophied muscle in the rat: I. Electron microscopic and immunohistochemical studies.
    Tamaki T; Akatsuka A; Tokunaga M; Uchiyama S; Shiraishi T
    Anat Rec; 1996 Nov; 246(3):325-34. PubMed ID: 8915454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of compensatory hypertrophied muscle in the rat: II. Comparison of histochemical and functional properties.
    Tamaki T; Shiraishi T
    Anat Rec; 1996 Nov; 246(3):335-42. PubMed ID: 8915455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appearance of complex branched fibers following repetitive muscle trauma in normal rat skeletal muscle.
    Tamaki T; Akatsuka A
    Anat Rec; 1994 Oct; 240(2):217-24. PubMed ID: 7992887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional cytoarchitecture of complex branched fibers in soleus muscle from mdx mutant mice.
    Tamaki T; Sekine T; Akatsuka A; Uchiyama S; Nakano S
    Anat Rec; 1993 Nov; 237(3):338-44. PubMed ID: 8291687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appearance of complex branched muscle fibers is associated with a shift to slow muscle characteristics.
    Tamaki T; Akatsuka A; Uchiyama S; Uchiyama Y; Shiraishi T
    Acta Anat (Basel); 1997; 159(2-3):108-13. PubMed ID: 9575361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of neuromuscular junctions on isolated branched muscle fibers: application of nitric acid fiber digestion method for scanning electron microscopy.
    Tamaki T; Sekine T; Akatsuka A; Uchiyama S; Nakano S
    J Electron Microsc (Tokyo); 1992 Apr; 41(2):76-81. PubMed ID: 1324292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New muscle fiber production during compensatory hypertrophy.
    Salleo A; Anastasi G; La Spada G; Falzea G; Denaro MG
    Med Sci Sports Exerc; 1980; 12(4):268-73. PubMed ID: 7421477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of satellite cells and muscle fibers to long-term compensatory hypertrophy.
    Salleo A; La Spada G; Falzea G; Denaro MG; Cicciarello R
    J Submicrosc Cytol; 1983 Oct; 15(4):929-40. PubMed ID: 6655769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satellite cell activation after muscle damage in young and adult rats.
    Jacobs SC; Wokke JH; Bär PR; Bootsma AL
    Anat Rec; 1995 Jul; 242(3):329-36. PubMed ID: 7573980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists.
    Snow MH
    Anat Rec; 1990 Aug; 227(4):437-46. PubMed ID: 2393096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of satellite cells in altering myosin expression during avian skeletal muscle hypertrophy.
    McCormick KM; Schultz E
    Dev Dyn; 1994 Jan; 199(1):52-63. PubMed ID: 8167379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myofiber adaptational response to exercise in a mouse model of nemaline myopathy.
    Nair-Shalliker V; Kee AJ; Joya JE; Lucas CA; Hoh JF; Hardeman EC
    Muscle Nerve; 2004 Oct; 30(4):470-80. PubMed ID: 15372535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-channel laser scanning microscopy for the identification and quantification of proliferating skeletal muscle satellite cells following synergist ablation.
    Brotchie D; Davies I; Ireland G; Mahon M
    J Anat; 1995 Feb; 186 ( Pt 1)(Pt 1):97-102. PubMed ID: 7649821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple stimulations for muscle-nerve-blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model.
    Tamaki T; Uchiyama Y; Okada Y; Tono K; Nitta M; Hoshi A; Akatsuka A
    Histochem Cell Biol; 2009 Jul; 132(1):59-70. PubMed ID: 19322581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional changes of muscle fiber types in growing rat hind limb.
    Konishi M; Iwamoto S; Ohara H; Shimada M
    Kaibogaku Zasshi; 2000 Jun; 75(3):267-73. PubMed ID: 10920604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensatory adaptations of skeletal muscle composition to a long-term functional overload.
    Hubbard RW; Ianuzzo CD; Mathew WT; Linduska JD
    Growth; 1975 Mar; 39(1):85-93. PubMed ID: 1132777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle.
    Hansen-Smith F; Egginton S; Zhou AL; Hudlicka O
    Microvasc Res; 2001 Jul; 62(1):1-14. PubMed ID: 11421656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structural study of the regeneration of muscle fibers in the rat soleus muscle during aging.
    Desaki J; Nishida N
    J Electron Microsc (Tokyo); 2011; 60(2):191-200. PubMed ID: 21335418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex muscle fiber network in the cricothyroid muscle: a scanning electron microscopic study.
    Hyodo M; Taguchi A; Yamagata T; Desaki J
    Laryngoscope; 2007 Apr; 117(4):600-3. PubMed ID: 17415128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.