BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8915777)

  • 1. The mechanism of beta-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures.
    Boskey AL; Guidon P; Doty SB; Stiner D; Leboy P; Binderman I
    J Bone Miner Res; 1996 Nov; 11(11):1694-702. PubMed ID: 8915777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine 5'-triphosphate promotes mineralization in differentiating chick limb-bud mesenchymal cell cultures.
    Boskey AL; Doty SB; Binderman I
    Microsc Res Tech; 1994 Aug; 28(6):492-504. PubMed ID: 7949395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures.
    Boskey AL; Paschalis EP; Binderman I; Doty SB
    J Cell Biochem; 2002; 84(3):509-19. PubMed ID: 11813256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells.
    Andrades JA; Han B; Becerra J; Sorgente N; Hall FL; Nimni ME
    Exp Cell Res; 1999 Aug; 250(2):485-98. PubMed ID: 10413602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells.
    Kulyk WM; Hoffman LM
    Exp Cell Res; 1996 Mar; 223(2):290-300. PubMed ID: 8601406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development.
    Quarles LD; Yohay DA; Lever LW; Caton R; Wenstrup RJ
    J Bone Miner Res; 1992 Jun; 7(6):683-92. PubMed ID: 1414487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. beta-Glycerophosphate-induced mineralization of osteoid does not alter expression of extracellular matrix components in fetal rat calvarial cell cultures.
    Lee KL; Aubin JE; Heersche JN
    J Bone Miner Res; 1992 Oct; 7(10):1211-9. PubMed ID: 1456088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levamisole and inorganic pyrophosphate inhibit beta-glycerophosphate induced mineralization of bone formed in vitro.
    Tenenbaum HC
    Bone Miner; 1987 Oct; 3(1):13-26. PubMed ID: 2850049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: An FTIR imaging study.
    Garimella R; Bi X; Anderson HC; Camacho NP
    Bone; 2006 Jun; 38(6):811-7. PubMed ID: 16461032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of extracellular matrix protein phosphorylation alters mineralization in differentiating chick limb-bud mesenchymal cell micromass cultures.
    Boskey AL; Doty SB; Kudryashov V; Mayer-Kuckuk P; Roy R; Binderman I
    Bone; 2008 Jun; 42(6):1061-71. PubMed ID: 18396125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum inhibits both initiation and progression of mineralization of osteoid nodules formed in differentiating rat calvaria cell cultures.
    Bellows CG; Aubin JE; Heersche JN
    J Bone Miner Res; 1995 Dec; 10(12):2011-6. PubMed ID: 8619383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes.
    Iwamoto M; Shapiro IM; Yagami K; Boskey AL; Leboy PS; Adams SL; Pacifici M
    Exp Cell Res; 1993 Aug; 207(2):413-20. PubMed ID: 8344389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.
    Simão AM; Beloti MM; Cezarino RM; Rosa AL; Pizauro JM; Ciancaglini P
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Apr; 146(4):679-87. PubMed ID: 16798036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrin signaling and cell spreading alterations by rottlerin treatment of chick limb bud mesenchymal cells.
    Choi YA; Kim DK; Kang SS; Sonn JK; Jin EJ
    Biochimie; 2009 May; 91(5):624-31. PubMed ID: 19306958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of proteoglycan modification on mineral formation in a differentiating chick limb-bud mesenchymal cell culture system.
    Boskey AL; Stiner D; Binderman I; Doty SB
    J Cell Biochem; 1997 Mar; 64(4):632-43. PubMed ID: 9093912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of N-cadherin and alkaline phosphatase in chick limb bud mesenchymal cells: regulation by 1,25-dihydroxyvitamin D3 or TGF-beta 1.
    Tsonis PA; Del Rio-Tsonis K; Millan JL; Wheelock MJ
    Exp Cell Res; 1994 Aug; 213(2):433-7. PubMed ID: 8050500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF; Greer K
    Dev Dyn; 1994 Jun; 200(2):103-16. PubMed ID: 7919498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Cadherin expression and signaling in limb mesenchymal chondrogenesis: stimulation by poly-L-lysine.
    Woodward WA; Tuan RS
    Dev Genet; 1999; 24(1-2):178-87. PubMed ID: 10079520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.