These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8916092)

  • 41. alpha1-Adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices.
    Herold S; Hecker C; Deitmer JW; Brockhaus J
    J Neurosci Res; 2005 Nov; 82(4):571-9. PubMed ID: 16237725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reversibility of cerebellar GABAergic synapse impairment induced by anti-glutamic acid decarboxylase autoantibodies.
    Ishida K; Mitoma H; Mizusawa H
    J Neurol Sci; 2008 Aug; 271(1-2):186-90. PubMed ID: 18534624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of halothane on GABAergic and glutamatergic transmission in isolated hippocampal nerve-synapse preparations.
    Kotani N; Wakita M; Shin MC; Ogawa S; Nonaka K; Akaike N
    Brain Res; 2012 Sep; 1473():9-18. PubMed ID: 22836013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus.
    Sun H; Wu SH
    Neuroscience; 2009 Apr; 160(1):198-211. PubMed ID: 19409201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alterations in GABAA receptor occupancy occur during the postnatal development of rat Purkinje cell but not granule cell synapses.
    Wall MJ
    Neuropharmacology; 2005 Oct; 49(5):596-609. PubMed ID: 15961127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus.
    Farazifard R; Wu SH
    Brain Res; 2010 Apr; 1325():28-40. PubMed ID: 20153735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum.
    Lippiello P; Hoxha E; Volpicelli F; Lo Duca G; Tempia F; Miniaci MC
    Neuropharmacology; 2015 Feb; 89():33-42. PubMed ID: 25218865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells.
    Chavis P; Mollard P; Bockaert J; Manzoni O
    Neuron; 1998 Apr; 20(4):773-81. PubMed ID: 9581768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced inhibitory synaptic transmission in the cerebellar molecular layer of the GluRdelta2 knock-out mouse.
    Ohtsuki G; Kawaguchi SY; Mishina M; Hirano T
    J Neurosci; 2004 Dec; 24(48):10900-7. PubMed ID: 15574740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secretin facilitates GABA transmission in the cerebellum.
    Yung WH; Leung PS; Ng SS; Zhang J; Chan SC; Chow BK
    J Neurosci; 2001 Sep; 21(18):7063-8. PubMed ID: 11549716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of RU33368, a low affinity ligand for neuronal benzodiazepine receptors, on rodent behaviours and GABA-mediated synaptic transmission in rat cerebellar slices.
    Gardner CR; Ward RA; Deacon RM; Bagust J; Walker RJ
    Gen Pharmacol; 1992 Nov; 23(6):1193-8. PubMed ID: 1336752
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling.
    Dobson KL; Jackson C; Balakrishnan S; Bellamy TC
    PLoS One; 2015; 10(5):e0125974. PubMed ID: 25933382
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interplay between neuromodulator-induced switching of short-term plasticity at sensorimotor synapses in the neonatal rat spinal cord.
    Barrière G; Tartas M; Cazalets JR; Bertrand SS
    J Physiol; 2008 Apr; 586(7):1903-20. PubMed ID: 18258661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of inhibitory synaptic plasticity in a Purkinje neuron.
    Hirano T; Kawaguchi SY
    Cerebellum; 2012 Jun; 11(2):453-4. PubMed ID: 22090365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis.
    Moises HC; Woodward DJ; Hoffer BJ; Freedman R
    Exp Neurol; 1979 Jun; 64(3):493-515. PubMed ID: 223861
    [No Abstract]   [Full Text] [Related]  

  • 56. Modulation of the responsiveness of cerebellar Purkinje cells to excitatory amino acids.
    Crépel F; Krupa M
    Adv Exp Med Biol; 1990; 268():323-9. PubMed ID: 1963743
    [No Abstract]   [Full Text] [Related]  

  • 57. Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells.
    Hirono M; Saitow F; Kudo M; Suzuki H; Yanagawa Y; Yamada M; Nagao S; Konishi S; Obata K
    PLoS One; 2012; 7(1):e29663. PubMed ID: 22235322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of cyclic adenosine monophosphate in simple forms of plasticity in the edible snail.
    Storozhuk MV; Balaban PM
    Neurosci Behav Physiol; 1990; 20(3):267-71. PubMed ID: 2170858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of normobaric hyperoxia on two indexes of synaptic function in Fisher 344 rats.
    Bickford PC; Chadman K; Williams B; Shukitt-Hale B; Holmes D; Taglialatela G; Joseph J
    Free Radic Biol Med; 1999 Apr; 26(7-8):817-24. PubMed ID: 10232824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GABA-induced synaptic facilitation at type B to A photoreceptor connections in Hermissenda.
    Schultz LM; Clark GA
    Brain Res Bull; 1997; 42(5):377-83. PubMed ID: 9092879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.