BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8916222)

  • 1. Modeling of halorhodopsin and rhodopsin based on bacteriorhodopsin.
    Neumüller M; Jähnig F
    Proteins; 1996 Oct; 26(2):146-56. PubMed ID: 8916222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of stability predictions and simulated unfolding of rhodopsin structures.
    Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J
    Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projection structure of halorhodopsin from Halobacterium halobium at 6 A resolution obtained by electron cryo-microscopy.
    Havelka WA; Henderson R; Heymann JA; Oesterhelt D
    J Mol Biol; 1993 Dec; 234(3):837-46. PubMed ID: 8254676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure of halorhodopsin at 7 A resolution.
    Havelka WA; Henderson R; Oesterhelt D
    J Mol Biol; 1995 Apr; 247(4):726-38. PubMed ID: 7723027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-scale approach toward structure prediction of retinal proteins.
    Chen CC; Chen CM
    J Struct Biol; 2009 Jan; 165(1):37-46. PubMed ID: 19000929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-crystallographic refinement of the structure of bacteriorhodopsin.
    Grigorieff N; Ceska TA; Downing KH; Baldwin JM; Henderson R
    J Mol Biol; 1996 Jun; 259(3):393-421. PubMed ID: 8676377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA; Oesterhelt D; Müller DJ
    Structure; 2005 Feb; 13(2):235-42. PubMed ID: 15698567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of rhodopsin.
    Schertler GF
    Novartis Found Symp; 1999; 224():54-66; discussion 66-9,. PubMed ID: 10614046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined biophysical and biochemical information confirms arrangement of transmembrane helices visible from the three-dimensional map of frog rhodopsin.
    Herzyk P; Hubbard RE
    J Mol Biol; 1998 Aug; 281(4):741-54. PubMed ID: 9710543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution.
    Mitsuoka K; Hirai T; Murata K; Miyazawa A; Kidera A; Kimura Y; Fujiyoshi Y
    J Mol Biol; 1999 Feb; 286(3):861-82. PubMed ID: 10024456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomic model for the structure of bacteriorhodopsin, a seven-helix membrane protein.
    Ceska TA; Henderson R; Baldwin JM; Zemlin F; Beckmann E; Downing K
    Acta Physiol Scand Suppl; 1992; 607():31-40. PubMed ID: 1449073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical framework for octopus rhodopsin crystallization.
    Sivozhelezov V; Nicolini C
    J Theor Biol; 2006 May; 240(2):260-9. PubMed ID: 16289210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of rhodopsin.
    Schertler GF
    Eye (Lond); 1998; 12 ( Pt 3b)():504-10. PubMed ID: 9775210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin.
    Karjalainen EL; Barth A
    J Phys Chem B; 2012 Apr; 116(15):4448-56. PubMed ID: 22435481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of different surface structures on high-resolution images of native halorhodopsin.
    Persike N; Pfeiffer M; Guckenberger R; Radmacher M; Fritz M
    J Mol Biol; 2001 Jul; 310(4):773-80. PubMed ID: 11453686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction.
    Bullough PA; Henderson R
    J Mol Biol; 1999 Mar; 286(5):1663-71. PubMed ID: 10064722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2011 Nov; 414(1):86-95. PubMed ID: 22001017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.