These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 8916259)
1. Motion related artifacts in spin-echo MR imaging: effects of sequence parameters on image quality at 1.5 Tesla. Adjei ON; Sugimura H; Tamura S; Shimizu T; Kihara Y; Kakitsubata S; Kakitsubata Y; Watanabe K Radiat Med; 1996; 14(4):179-83. PubMed ID: 8916259 [TBL] [Abstract][Full Text] [Related]
2. Cardiac MRI: comparison between single-shot fast spin echo and conventional spin echo sequences in the morphological evaluation of the ventricles. Erriquez D; Di Cesare E; Barile A; Gallucci M; Splendiani A; Masciocchi C Radiol Med; 2002; 103(1-2):34-44. PubMed ID: 11859299 [TBL] [Abstract][Full Text] [Related]
3. Fast multi-planar gradient echo MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts. Li T; Mirowitz SA Magn Reson Imaging; 2004 Jul; 22(6):807-14. PubMed ID: 15234449 [TBL] [Abstract][Full Text] [Related]
4. Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla. Klumpp B; Fenchel M; Hoevelborn T; Helber U; Scheule A; Claussen C; Miller S Invest Radiol; 2006 Sep; 41(9):661-7. PubMed ID: 16896300 [TBL] [Abstract][Full Text] [Related]
5. Motion artifact control in body MR imaging. Barish MA; Jara H Magn Reson Imaging Clin N Am; 1999 May; 7(2):289-301. PubMed ID: 10382162 [TBL] [Abstract][Full Text] [Related]
6. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors: comparison of echo-planar, HASTE, and spin-echo sequences. Abe Y; Yamashita Y; Tang Y; Namimoto T; Takahashi M Radiat Med; 2000; 18(1):7-14. PubMed ID: 10852650 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla. Fischbach F; Müller M; Bruhn H Acta Radiol; 2008 Apr; 49(3):358-63. PubMed ID: 18365827 [TBL] [Abstract][Full Text] [Related]
8. Interplay between intensity standardization and inhomogeneity correction in MR image processing. Madabhushi A; Udupa JK IEEE Trans Med Imaging; 2005 May; 24(5):561-76. PubMed ID: 15889544 [TBL] [Abstract][Full Text] [Related]
9. Adaptive averaging for improved SNR in real-time coronary artery MRI. Sussman MS; Robert N; Wright GA IEEE Trans Med Imaging; 2004 Aug; 23(8):1034-45. PubMed ID: 15338736 [TBL] [Abstract][Full Text] [Related]
10. Assessment of parallel acquisition techniques in adrenal magnetic resonance imaging: does increased temporal resolution significantly improve visualization of adrenal lesions? Boll DT; Hillenbrand CM; Lewin JS; Merkle EM Acad Radiol; 2004 Jul; 11(7):809-16. PubMed ID: 15217599 [TBL] [Abstract][Full Text] [Related]
11. [Definition criteria for a magnetic resonance quality assurance program: multicenter study]. Mascaro L; Strocchi S; Colombo P; Del Corona M; Baldassarri AM Radiol Med; 1999 May; 97(5):389-97. PubMed ID: 10432972 [TBL] [Abstract][Full Text] [Related]
12. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil. Fenchel M; Deshpande VS; Nael K; Finn JP; Miller S; Ruehm S; Laub G Invest Radiol; 2006 Aug; 41(8):601-8. PubMed ID: 16829742 [TBL] [Abstract][Full Text] [Related]
13. Technical aspects on magnetic resonance imaging of the spine at 1.5 tesla. Holtås SL; Plewes DB; Simon JH; Ekholm S; Kido DK; Utz R Acta Radiol; 1987; 28(4):375-81. PubMed ID: 2958049 [TBL] [Abstract][Full Text] [Related]
14. Renal T2-weighted turbo-spin-echo imaging with BLADE at 3.0 Tesla: initial experience. Michaely HJ; Kramer H; Weckbach S; Dietrich O; Reiser MF; Schoenberg SO J Magn Reson Imaging; 2008 Jan; 27(1):148-53. PubMed ID: 18050324 [TBL] [Abstract][Full Text] [Related]
15. High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. Michaely HJ; Herrmann KA; Kramer H; Dietrich O; Laub G; Reiser MF; Schoenberg SO J Magn Reson Imaging; 2006 Jul; 24(1):95-100. PubMed ID: 16729261 [TBL] [Abstract][Full Text] [Related]
16. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils. Gensanne D; Josse G; Lagarde JM; Vincensini D Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Zaitsev M; Dold C; Sakas G; Hennig J; Speck O Neuroimage; 2006 Jul; 31(3):1038-50. PubMed ID: 16600642 [TBL] [Abstract][Full Text] [Related]
18. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design]. Adamietz B; Cavallaro A; Radkow T; Alibek S; Holter W; Bautz WA; Staatz G Rofo; 2007 Aug; 179(8):826-31. PubMed ID: 17577870 [TBL] [Abstract][Full Text] [Related]
19. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts. Obata T; Uemura K; Nonaka H; Tamura M; Tanada S; Ikehira H Magn Reson Imaging; 2006 Jan; 24(1):97-101. PubMed ID: 16410184 [TBL] [Abstract][Full Text] [Related]
20. Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? Schindera ST; Merkle EM; Dale BM; Delong DM; Nelson RC Acad Radiol; 2006 Oct; 13(10):1236-43. PubMed ID: 16979073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]