BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8916259)

  • 1. Motion related artifacts in spin-echo MR imaging: effects of sequence parameters on image quality at 1.5 Tesla.
    Adjei ON; Sugimura H; Tamura S; Shimizu T; Kihara Y; Kakitsubata S; Kakitsubata Y; Watanabe K
    Radiat Med; 1996; 14(4):179-83. PubMed ID: 8916259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac MRI: comparison between single-shot fast spin echo and conventional spin echo sequences in the morphological evaluation of the ventricles.
    Erriquez D; Di Cesare E; Barile A; Gallucci M; Splendiani A; Masciocchi C
    Radiol Med; 2002; 103(1-2):34-44. PubMed ID: 11859299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast multi-planar gradient echo MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts.
    Li T; Mirowitz SA
    Magn Reson Imaging; 2004 Jul; 22(6):807-14. PubMed ID: 15234449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla.
    Klumpp B; Fenchel M; Hoevelborn T; Helber U; Scheule A; Claussen C; Miller S
    Invest Radiol; 2006 Sep; 41(9):661-7. PubMed ID: 16896300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion artifact control in body MR imaging.
    Barish MA; Jara H
    Magn Reson Imaging Clin N Am; 1999 May; 7(2):289-301. PubMed ID: 10382162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors: comparison of echo-planar, HASTE, and spin-echo sequences.
    Abe Y; Yamashita Y; Tang Y; Namimoto T; Takahashi M
    Radiat Med; 2000; 18(1):7-14. PubMed ID: 10852650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla.
    Fischbach F; Müller M; Bruhn H
    Acta Radiol; 2008 Apr; 49(3):358-63. PubMed ID: 18365827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between intensity standardization and inhomogeneity correction in MR image processing.
    Madabhushi A; Udupa JK
    IEEE Trans Med Imaging; 2005 May; 24(5):561-76. PubMed ID: 15889544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive averaging for improved SNR in real-time coronary artery MRI.
    Sussman MS; Robert N; Wright GA
    IEEE Trans Med Imaging; 2004 Aug; 23(8):1034-45. PubMed ID: 15338736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of parallel acquisition techniques in adrenal magnetic resonance imaging: does increased temporal resolution significantly improve visualization of adrenal lesions?
    Boll DT; Hillenbrand CM; Lewin JS; Merkle EM
    Acad Radiol; 2004 Jul; 11(7):809-16. PubMed ID: 15217599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Definition criteria for a magnetic resonance quality assurance program: multicenter study].
    Mascaro L; Strocchi S; Colombo P; Del Corona M; Baldassarri AM
    Radiol Med; 1999 May; 97(5):389-97. PubMed ID: 10432972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.
    Fenchel M; Deshpande VS; Nael K; Finn JP; Miller S; Ruehm S; Laub G
    Invest Radiol; 2006 Aug; 41(8):601-8. PubMed ID: 16829742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical aspects on magnetic resonance imaging of the spine at 1.5 tesla.
    Holtås SL; Plewes DB; Simon JH; Ekholm S; Kido DK; Utz R
    Acta Radiol; 1987; 28(4):375-81. PubMed ID: 2958049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal T2-weighted turbo-spin-echo imaging with BLADE at 3.0 Tesla: initial experience.
    Michaely HJ; Kramer H; Weckbach S; Dietrich O; Reiser MF; Schoenberg SO
    J Magn Reson Imaging; 2008 Jan; 27(1):148-53. PubMed ID: 18050324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors.
    Michaely HJ; Herrmann KA; Kramer H; Dietrich O; Laub G; Reiser MF; Schoenberg SO
    J Magn Reson Imaging; 2006 Jul; 24(1):95-100. PubMed ID: 16729261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system.
    Zaitsev M; Dold C; Sakas G; Hennig J; Speck O
    Neuroimage; 2006 Jul; 31(3):1038-50. PubMed ID: 16600642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tolerance of magnetic resonance imaging in children and adolescents performed in a 1.5 Tesla MR scanner with an open design].
    Adamietz B; Cavallaro A; Radkow T; Alibek S; Holter W; Bautz WA; Staatz G
    Rofo; 2007 Aug; 179(8):826-31. PubMed ID: 17577870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.
    Obata T; Uemura K; Nonaka H; Tamura M; Tanada S; Ikehira H
    Magn Reson Imaging; 2006 Jan; 24(1):97-101. PubMed ID: 16410184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio?
    Schindera ST; Merkle EM; Dale BM; Delong DM; Nelson RC
    Acad Radiol; 2006 Oct; 13(10):1236-43. PubMed ID: 16979073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.