These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 8916558)
21. Signal enhancement for peptide analysis in liquid chromatography-electrospray ionization mass spectrometry with trifluoroacetic acid containing mobile phase by postcolumn electrophoretic mobility control. Wang NH; Lee WL; Her GR Anal Chem; 2011 Aug; 83(16):6163-8. PubMed ID: 21744789 [TBL] [Abstract][Full Text] [Related]
22. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry. García MC J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Oct; 825(2):111-23. PubMed ID: 16213445 [TBL] [Abstract][Full Text] [Related]
23. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Tomlinson AJ; Chicz RM Rapid Commun Mass Spectrom; 2003; 17(9):909-16. PubMed ID: 12717763 [TBL] [Abstract][Full Text] [Related]
24. [Study of protein separation by reversed-phase high performance liquid chromatography]. Zhang H; Wang J; Zhong H; Luo L Se Pu; 1998 May; 16(3):220-2. PubMed ID: 11326998 [TBL] [Abstract][Full Text] [Related]
25. High-performance liquid chromatography of selenium compounds utilizing perfluorinated carboxylic acid ion-pairing agents and inductively coupled plasma and electrospray ionization mass spectrometric detection. Kotrebai M; Tyson JF; Block E; Uden PC J Chromatogr A; 2000 Jan; 866(1):51-63. PubMed ID: 10681009 [TBL] [Abstract][Full Text] [Related]
26. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases. Apffel A; Fischer S; Goldberg G; Goodley PC; Kuhlmann FE J Chromatogr A; 1995 Sep; 712(1):177-90. PubMed ID: 8556150 [TBL] [Abstract][Full Text] [Related]
27. Expanding the range of sub/supercritical fluid chromatography: Advantageous use of methanesulfonic acid in water-rich modifiers for peptide analysis. Losacco GL; DaSilva JO; Liu J; Regalado EL; Veuthey JL; Guillarme D J Chromatogr A; 2021 Apr; 1642():462048. PubMed ID: 33744606 [TBL] [Abstract][Full Text] [Related]
28. Reversed-phase high pressure liquid chromatography of globin chains: its application for the prenatal diagnosis of beta-thalassemia. Congote LF Prog Clin Biol Res; 1981; 60():39-52. PubMed ID: 7279970 [TBL] [Abstract][Full Text] [Related]
29. Optimization of reversed-phase peptide liquid chromatography ultraviolet mass spectrometry analyses using an automated blending methodology. Chakraborty AB; Berger SJ J Biomol Tech; 2005 Dec; 16(4):327-35. PubMed ID: 16522853 [TBL] [Abstract][Full Text] [Related]
30. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. Wybraniec S; Stalica P; Jerz G; Klose B; Gebers N; Winterhalter P; Spórna A; Szaleniec M; Mizrahi Y J Chromatogr A; 2009 Oct; 1216(41):6890-9. PubMed ID: 19732900 [TBL] [Abstract][Full Text] [Related]
31. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography. Åsberg D; Langborg Weinmann A; Leek T; Lewis RJ; Klarqvist M; Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():80-91. PubMed ID: 28363419 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of an embedded polar C4 phase for hydrophobic protein analysis by reversed-phase liquid chromatography. Hamada T; Tanaka H; Izumine H; Ohira M J Chromatogr A; 2004 Jul; 1043(1):27-32. PubMed ID: 15317409 [TBL] [Abstract][Full Text] [Related]
33. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents. Wujcik CE; Tweed J; Kadar EP J Sep Sci; 2010 Mar; 33(6-7):826-33. PubMed ID: 20087867 [TBL] [Abstract][Full Text] [Related]
34. Chromatographic separation of enantiomers of non-protein alpha-amino acids after derivatization with Marfey's reagent and its four variants. Bhushan R; Kumar V; Tanwar S Amino Acids; 2009 Mar; 36(3):571-9. PubMed ID: 18612776 [TBL] [Abstract][Full Text] [Related]
35. Liquid chromatographic determination of ivermectin in animal plasma with trifluoroacetic anhydride and N-methylimidazole as the derivatization reagent. de Montigny P; Shim JS; Pivnichny JV J Pharm Biomed Anal; 1990; 8(6):507-11. PubMed ID: 2093388 [TBL] [Abstract][Full Text] [Related]
36. [Separation of proteins by gradient pressurized capillary electrochromatography]. Zhao L; Zou J; Wang X; Yan C; Gao R; Liu M; Lü X Se Pu; 2005 Nov; 23(6):669-72. PubMed ID: 16499003 [TBL] [Abstract][Full Text] [Related]
37. Context-dependent effects on the hydrophilicity/hydrophobicity of side-chains during reversed-phase high-performance liquid chromatography: Implications for prediction of peptide retention behaviour. Mant CT; Hodges RS J Chromatogr A; 2006 Sep; 1125(2):211-9. PubMed ID: 16814308 [TBL] [Abstract][Full Text] [Related]
38. Identification of multiple tachykinins in bovine adrenal medulla using an improved chromatographic procedure. Cheung NS; Basile S; Livett BG Neuropeptides; 1993 Feb; 24(2):91-7. PubMed ID: 8459912 [TBL] [Abstract][Full Text] [Related]
39. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? McCalley DV J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636 [TBL] [Abstract][Full Text] [Related]
40. Application of gradient programs for the determination of underivatized amino acids and small peptides in reversed-phase high-performance liquid chromatography with contactless conductivity detection. Kubán P; Hauser PC J Chromatogr A; 2006 Sep; 1128(1-2):97-104. PubMed ID: 16814797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]