BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8916654)

  • 1. Quantification of facial morphology using stereophotogrammetry--demonstration of a new concept.
    Ras F; Habets LL; van Ginkel FC; Prahl-Andersen B
    J Dent; 1996 Sep; 24(5):369-74. PubMed ID: 8916654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for quantifying facial asymmetry in three dimensions using stereophotogrammetry.
    Ras F; Habets LL; van Ginkel FC; Prahl-Andersen B
    Angle Orthod; 1995; 65(3):233-9. PubMed ID: 7639437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeatability Study of Angular and Linear Measurements on Facial Morphology Analysis by Means of Stereophotogrammetry.
    Andrade LM; Rodrigues da Silva AMB; Magri LV; Rodrigues da Silva MAM
    J Craniofac Surg; 2017 Jun; 28(4):1107-1111. PubMed ID: 28212123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three methods of facial measurement.
    Ghoddousi H; Edler R; Haers P; Wertheim D; Greenhill D
    Int J Oral Maxillofac Surg; 2007 Mar; 36(3):250-8. PubMed ID: 17113754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereo-assisted landmark detection for the analysis of changes in 3-D facial shape.
    Naftel AJ; Trenouth MJ
    Med Inform Internet Med; 2004 Jun; 29(2):137-55. PubMed ID: 15370994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and reproducibility of a 3D stereophotogrammetric reference frame for facial soft tissue growth of babies and young children with and without orofacial clefts.
    Brons S; van Beusichem ME; Maal TJ; Plooij JM; Bronkhorst EM; Bergé SJ; Kuijpers-Jagtman AM
    Int J Oral Maxillofac Surg; 2013 Jan; 42(1):2-8. PubMed ID: 22920646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft-tissue facial morphometry from 6 years to adulthood: a three-dimensional growth study using a new modeling.
    Ferrario VF; Sforza C; Poggio CE; Schmitz JH
    Plast Reconstr Surg; 1999 Mar; 103(3):768-78. PubMed ID: 10077065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal study on three-dimensional changes of facial asymmetry in children between 4 to 12 years of age with unilateral cleft lip and palate.
    Ras F; Habets LL; van Ginkel FC; Prahl-Andersen B
    Cleft Palate Craniofac J; 1995 Nov; 32(6):463-8. PubMed ID: 8547285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system.
    de Menezes M; Rosati R; Ferrario VF; Sforza C
    J Oral Maxillofac Surg; 2010 Sep; 68(9):2129-35. PubMed ID: 20646812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Utility of three-dimensional soft tissue facial morphometry and conventional cephalometrics in people with normal occlusion].
    Guo H; Luo S; Bai Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2003 Aug; 21(4):314-7. PubMed ID: 14513594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical validation of the Di3D stereophotogrammetry surface imaging system.
    Winder RJ; Darvann TA; McKnight W; Magee JD; Ramsay-Baggs P
    Br J Oral Maxillofac Surg; 2008 Jan; 46(1):33-7. PubMed ID: 17980940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereophotogrammetry-based facial depth measurements: a novel method for quantifying facial projection.
    Jayaratne YS; Deutsch CK; Zwahlen RA
    Surg Innov; 2014 Feb; 21(1):59-64. PubMed ID: 23423724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional facial characteristics of Caucasian infants without cleft and correlation with body measurements.
    White JE; Ayoub AF; Hosey MT; Bock M; Bowman A; Bowman J; Siebert JP; Ray A
    Cleft Palate Craniofac J; 2004 Nov; 41(6):593-602. PubMed ID: 15516161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional evaluation of facial asymmetry in cleft lip and palate.
    Ras F; Habets LL; van Ginkel FC; Prahl-Andersen B
    Cleft Palate Craniofac J; 1994 Mar; 31(2):116-21. PubMed ID: 8186217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of an automated method of 3D soft tissue landmark detection.
    Baksi S; Freezer S; Matsumoto T; Dreyer C
    Eur J Orthod; 2021 Dec; 43(6):622-630. PubMed ID: 33377968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and reproducibility of a high-resolution three-dimensional facial imaging system.
    Khambay B; Nairn N; Bell A; Miller J; Bowman A; Ayoub AF
    Br J Oral Maxillofac Surg; 2008 Jan; 46(1):27-32. PubMed ID: 17561318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facial growth: separating shape from size.
    Hennessy RJ; Moss JP
    Eur J Orthod; 2001 Jun; 23(3):275-85. PubMed ID: 11471270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of soft tissue facial morphometry in children with Class I and Class II occlusions.
    Ferrario VF; Sforza C; Serrao G; Puletto S; Bignotto M; Tartaglia G
    Int J Adult Orthodon Orthognath Surg; 1994; 9(3):187-94. PubMed ID: 7814923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of facial soft tissue landmarks on facial images captured on a 3D camera.
    Othman SA; Ahmad R; Mericant AF; Jamaludin M
    Aust Orthod J; 2013 May; 29(1):58-65. PubMed ID: 23785939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth in hemifacial microsomia studied with the aid of roentgen stereophotogrammetry and metallic implants.
    Rune B; Selvik G; Sarnäs KV; Jacobsson S
    Cleft Palate J; 1981 Apr; 18(2):128-46. PubMed ID: 6939508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.