BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8917076)

  • 1. Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon.
    Schöck F; Dahl MK
    Gene; 1996 Oct; 175(1-2):59-63. PubMed ID: 8917076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The trehalose operon of Pseudomonas fluorescens ATCC 17400.
    Matthijs S; Koedam N; Cornelis P; De Greve H
    Res Microbiol; 2000 Dec; 151(10):845-51. PubMed ID: 11191810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR.
    Schöck F; Dahl MK
    J Bacteriol; 1996 Aug; 178(15):4576-81. PubMed ID: 8755887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose.
    Klein W; Horlacher R; Boos W
    J Bacteriol; 1995 Jul; 177(14):4043-52. PubMed ID: 7608078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and sequencing of a 40.6 kb segment in the 73 degrees-76 degrees region of the Bacillus subtilis chromosome containing genes for trehalose metabolism and acetoin utilization.
    Yamamoto H; Uchiyama S; Sekiguchi J
    Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3057-65. PubMed ID: 8969503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S; Hecker M
    J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis.
    Tobisch S; Glaser P; Krüger S; Hecker M
    J Bacteriol; 1997 Jan; 179(2):496-506. PubMed ID: 8990303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.
    Reizer J; Hoischen C; Reizer A; Pham TN; Saier MH
    Protein Sci; 1993 Apr; 2(4):506-21. PubMed ID: 7686067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity.
    Arnaud M; Vary P; Zagorec M; Klier A; Debarbouille M; Postma P; Rapoport G
    J Bacteriol; 1992 May; 174(10):3161-70. PubMed ID: 1577686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of flagellar synthesis regulatory and structural genes in a sigma D-dependent operon of Bacillus subtilis.
    Mirel DB; Lauer P; Chamberlin MJ
    J Bacteriol; 1994 Aug; 176(15):4492-500. PubMed ID: 8045879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator.
    Bürklen L; Schöck F; Dahl MK
    Mol Gen Genet; 1998 Oct; 260(1):48-55. PubMed ID: 9829827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-alpha-(1-1)-glucosidase encoded by the treA gene.
    Helfert C; Gotsche S; Dahl MK
    Mol Microbiol; 1995 Apr; 16(1):111-120. PubMed ID: 7651129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of TreR, the major regulator of the Escherichia coli trehalose system.
    Horlacher R; Boos W
    J Biol Chem; 1997 May; 272(20):13026-32. PubMed ID: 9148912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein.
    Saxild HH; Andersen LN; Hammer K
    J Bacteriol; 1996 Jan; 178(2):424-34. PubMed ID: 8550462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization.
    Zhu PP; Reizer J; Peterkofsky A
    Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequences of ccpA and two downstream Bacillus megaterium genes with homology to the motAB operon from Bacillus subtilis.
    Hueck C; Kraus A; Hillen W
    Gene; 1994 May; 143(1):147-8. PubMed ID: 8200532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression.
    Krüger S; Gertz S; Hecker M
    J Bacteriol; 1996 May; 178(9):2637-44. PubMed ID: 8626332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.