These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8917084)

  • 1. Isolation of a Candida glabrata centromere and its use in construction of plasmid vectors.
    Kitada K; Yamaguchi E; Arisawa M
    Gene; 1996 Oct; 175(1-2):105-8. PubMed ID: 8917084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere.
    Kitada K; Yamaguchi E; Hamada K; Arisawa M
    Curr Genet; 1997 Feb; 31(2):122-7. PubMed ID: 9021128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa.
    Ohkuma M; Kobayashi K; Kawai S; Hwang CW; Ohta A; Takagi M
    Mol Gen Genet; 1995 Dec; 249(4):447-55. PubMed ID: 8552050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis.
    Iborra F; Ball MM
    Yeast; 1994 Dec; 10(12):1621-9. PubMed ID: 7725797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.
    Stoyan T; Gloeckner G; Diekmann S; Carbon J
    Mol Cell Biol; 2001 Aug; 21(15):4875-88. PubMed ID: 11438645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae.
    Cottarel G; Shero JH; Hieter P; Hegemann JH
    Mol Cell Biol; 1989 Aug; 9(8):3342-9. PubMed ID: 2552293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries.
    Hennemuth B; Marx KA
    BMC Mol Biol; 2006 Mar; 7():12. PubMed ID: 16542422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation.
    Jehn B; Niedenthal R; Hegemann JH
    Mol Cell Biol; 1991 Oct; 11(10):5212-21. PubMed ID: 1922041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that part of a centromeric DNA region induces pseudohyphal growth in a dimorphic yeast, Candida maltosa.
    Nakazawa T; Motoyama T; Horiuchi H; Ohta A; Takagi M
    J Bacteriol; 1997 Aug; 179(16):5030-6. PubMed ID: 9260943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional selection and analysis of yeast centromeric DNA.
    Hieter P; Pridmore D; Hegemann JH; Thomas M; Davis RW; Philippsen P
    Cell; 1985 Oct; 42(3):913-21. PubMed ID: 2996783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae.
    Baker RE; Rogers K
    Genetics; 2005 Dec; 171(4):1463-75. PubMed ID: 16079225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-copy-number ADE2-bearing plasmid for transformation of Candida glabrata.
    Hanic-Joyce PJ; Joyce PB
    Gene; 1998 May; 211(2):395-400. PubMed ID: 9602176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; Steensma HY; Van den Berg JA
    Mol Gen Genet; 1994 May; 243(3):325-33. PubMed ID: 8190085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida glabrata shuttle vectors suitable for translational fusions to lacZ and use of beta-galactosidase as a reporter of gene expression.
    El Barkani A; Haynes K; Mösch H; Frosch M; Mühlschlegel FA
    Gene; 2000 Apr; 246(1-2):151-5. PubMed ID: 10767536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system for gene cloning and manipulation in the yeast Candida glabrata.
    Zhou P; Szczypka MS; Young R; Thiele DJ
    Gene; 1994 May; 142(1):135-40. PubMed ID: 8181748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unwound regions in yeast centromere IV DNA.
    Tal M; Shimron F; Yagil G
    J Mol Biol; 1994 Oct; 243(2):179-89. PubMed ID: 7932748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Topology and Global Architecture of Point Centromeres.
    Díaz-Ingelmo O; Martínez-García B; Segura J; Valdés A; Roca J
    Cell Rep; 2015 Oct; 13(4):667-677. PubMed ID: 26489472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae.
    Hegemann JH; Shero JH; Cottarel G; Philippsen P; Hieter P
    Mol Cell Biol; 1988 Jun; 8(6):2523-35. PubMed ID: 3043181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of Zygosaccharomyces rouxii centromeres and construction of first Z. rouxii centromeric vectors.
    Pribylova L; Straub ML; Sychrova H; de Montigny J
    Chromosome Res; 2007; 15(4):439-45. PubMed ID: 17487563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning system for Candida glabrata using elements from the metallothionein-IIa-encoding gene that confer autonomous replication.
    Mehra RK; Thorvaldsen JL; Macreadie IG; Winge DR
    Gene; 1992 Apr; 113(1):119-24. PubMed ID: 1563627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.