These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 8917473)
1. Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis. Nieboer M; Vis AJ; Witholt B Eur J Biochem; 1996 Oct; 241(2):691-6. PubMed ID: 8917473 [TBL] [Abstract][Full Text] [Related]
2. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Nieboer M; Kingma J; Witholt B Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351 [TBL] [Abstract][Full Text] [Related]
3. Determinants for overproduction of the Pseudomonas oleovorans cytoplasmic membrane protein alkane hydroxylase in alk+ Escherichia coli W3110. Nieboer M; Gunnewijk M; van Beilen JB; Witholt B J Bacteriol; 1997 Feb; 179(3):762-8. PubMed ID: 9006031 [TBL] [Abstract][Full Text] [Related]
4. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host. Staijen IE; Hatzimanikatis V; Witholt B Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013 [TBL] [Abstract][Full Text] [Related]
5. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. Staijen IE; Marcionelli R; Witholt B J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains. Staijen IE; Witholt B Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198 [TBL] [Abstract][Full Text] [Related]
7. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Staijen IE; Van Beilen JB; Witholt B Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934 [TBL] [Abstract][Full Text] [Related]
8. Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110[pGEc47]. Peters J; Witholt B Biochim Biophys Acta; 1994 Dec; 1196(2):145-53. PubMed ID: 7841178 [TBL] [Abstract][Full Text] [Related]
9. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol. Chen Q; Janssen DB; Witholt B J Bacteriol; 1995 Dec; 177(23):6894-901. PubMed ID: 7592483 [TBL] [Abstract][Full Text] [Related]
10. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. Chen Q; Janssen DB; Witholt B J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943 [TBL] [Abstract][Full Text] [Related]
11. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. van Beilen JB; Penninga D; Witholt B J Biol Chem; 1992 May; 267(13):9194-201. PubMed ID: 1315749 [TBL] [Abstract][Full Text] [Related]
12. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. Kok M; Oldenhuis R; van der Linden MP; Raatjes P; Kingma J; van Lelyveld PH; Witholt B J Biol Chem; 1989 Apr; 264(10):5435-41. PubMed ID: 2647718 [TBL] [Abstract][Full Text] [Related]
13. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. Eggink G; Lageveen RG; Altenburg B; Witholt B J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430 [TBL] [Abstract][Full Text] [Related]
14. Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia. Lee NR; Hwang MO; Jung GH; Kim YS; Min KH Biochem Biophys Res Commun; 1996 Jan; 218(1):17-21. PubMed ID: 8573125 [TBL] [Abstract][Full Text] [Related]
15. Suppression of Escherichia coli alkB mutants by Saccharomyces cerevisiae genes. Wei YF; Chen BJ; Samson L J Bacteriol; 1995 Sep; 177(17):5009-15. PubMed ID: 7665478 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. Jiang P; Cronan JE J Bacteriol; 1994 May; 176(10):2814-21. PubMed ID: 7910602 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. Smits TH; Balada SB; Witholt B; van Beilen JB J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. van Beilen JB; Panke S; Lucchini S; Franchini AG; Röthlisberger M; Witholt B Microbiology (Reading); 2001 Jun; 147(Pt 6):1621-1630. PubMed ID: 11390693 [TBL] [Abstract][Full Text] [Related]
20. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Smits TH; Röthlisberger M; Witholt B; van Beilen JB Environ Microbiol; 1999 Aug; 1(4):307-17. PubMed ID: 11207749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]