BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8917505)

  • 1. A zinc finger directory for high-affinity DNA recognition.
    Jamieson AC; Wang H; Kim SH
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12834-9. PubMed ID: 8917505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro selection of zinc fingers with altered DNA-binding specificity.
    Jamieson AC; Kim SH; Wells JA
    Biochemistry; 1994 May; 33(19):5689-95. PubMed ID: 8180194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy between adjacent zinc fingers in sequence-specific DNA recognition.
    Isalan M; Choo Y; Klug A
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5617-21. PubMed ID: 9159121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity binding sites for the Wilms' tumour suppressor protein WT1.
    Hamilton TB; Barilla KC; Romaniuk PJ
    Nucleic Acids Res; 1995 Jan; 23(2):277-84. PubMed ID: 7862533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity.
    Wuttke DS; Foster MP; Case DA; Gottesfeld JM; Wright PE
    J Mol Biol; 1997 Oct; 273(1):183-206. PubMed ID: 9367756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition.
    Miller JC; Pabo CO
    J Mol Biol; 2001 Oct; 313(2):309-15. PubMed ID: 11800559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single amino acid substitution in zinc finger 2 of Adr1p changes its binding specificity at two positions in UAS1.
    Cheng C; Young ET
    J Mol Biol; 1995 Aug; 251(1):1-8. PubMed ID: 7643379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains.
    Hansen PK; Christensen JH; Nyborg J; Lillelund O; Thøgersen HC
    J Mol Biol; 1993 Sep; 233(2):191-202. PubMed ID: 8377197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA.
    McBryant SJ; Gedulin B; Clemens KR; Wright PE; Gottesfeld JM
    Nucleic Acids Res; 1996 Jul; 24(13):2567-74. PubMed ID: 8692697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of GC-->AT recognition and elucidation of AT recognition mechanism in zinc finger transcription factor by permutational approach.
    Emori T; Nagaoka M; Sugiura Y
    Nucleic Acids Symp Ser; 1995; (34):3-4. PubMed ID: 8966119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition.
    Elrod-Erickson M; Benson TE; Pabo CO
    Structure; 1998 Apr; 6(4):451-64. PubMed ID: 9562555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities.
    Rebar EJ; Pabo CO
    Science; 1994 Feb; 263(5147):671-3. PubMed ID: 8303274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of zif268 zinc-finger motifs gives rise to non-native zinc-co-ordination sites but preserves wild-type DNA recognition.
    Green A; Sarkar B
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):85-90. PubMed ID: 9639566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions.
    Elrod-Erickson M; Rould MA; Nekludova L; Pabo CO
    Structure; 1996 Oct; 4(10):1171-80. PubMed ID: 8939742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.
    Morris JF; Hromas R; Rauscher FJ
    Mol Cell Biol; 1994 Mar; 14(3):1786-95. PubMed ID: 8114711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays.
    Bulyk ML; Huang X; Choo Y; Church GM
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7158-63. PubMed ID: 11404456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End effects in DNA recognition by zinc finger arrays.
    Choo Y
    Nucleic Acids Res; 1998 Jan; 26(2):554-7. PubMed ID: 9421515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions.
    Choo Y; Klug A
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11168-72. PubMed ID: 7972028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors.
    Dreier B; Beerli RR; Segal DJ; Flippin JD; Barbas CF
    J Biol Chem; 2001 Aug; 276(31):29466-78. PubMed ID: 11340073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.