BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8917565)

  • 1. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines.
    Wang D; Youngson C; Wong V; Yeger H; Dinauer MC; Vega-Saenz Miera E; Rudy B; Cutz E
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13182-7. PubMed ID: 8917565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice.
    Fu XW; Wang D; Nurse CA; Dinauer MC; Cutz E
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4374-9. PubMed ID: 10760304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence.
    Buttigieg J; Pan J; Yeger H; Cutz E
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L598-607. PubMed ID: 22865553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of NOX2 and "novel oxidases" in airway chemoreceptor O(2) sensing.
    Cutz E; Pan J; Yeger H
    Adv Exp Med Biol; 2009; 648():427-38. PubMed ID: 19536508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells.
    Youngson C; Nurse C; Yeger H; Curnutte JT; Vollmer C; Wong V; Cutz E
    Microsc Res Tech; 1997 Apr; 37(1):101-6. PubMed ID: 9144626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensing in airway chemoreceptors.
    Youngson C; Nurse C; Yeger H; Cutz E
    Nature; 1993 Sep; 365(6442):153-5. PubMed ID: 8371757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O(2) sensing by airway chemoreceptor-derived cells. Protein kinase c activation reveals functional evidence for involvement of NADPH oxidase.
    O'Kelly I; Lewis A; Peers C; Kemp PJ
    J Biol Chem; 2000 Mar; 275(11):7684-92. PubMed ID: 10713079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit.
    Fu XW; Nurse CA; Wang YT; Cutz E
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):139-50. PubMed ID: 9831722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung.
    O'Kelly I; Peers C; Kemp PJ
    Am J Physiol; 1998 Oct; 275(4):L709-16. PubMed ID: 9755103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic induction of gene expression in chronic granulomatous disease-derived B-cell lines: oxygen sensing is independent of the cytochrome b558-containing nicotinamide adenine dinucleotide phosphate oxidase.
    Wenger RH; Marti HH; Schuerer-Maly CC; Kvietikova I; Bauer C; Gassmann M; Maly FE
    Blood; 1996 Jan; 87(2):756-61. PubMed ID: 8555500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular identification of Kvalpha subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body.
    Sanchez D; López-López JR; Pérez-García MT; Sanz-Alfayate G; Obeso A; Ganfornina MD; Gonzalez C
    J Physiol; 2002 Jul; 542(Pt 2):369-82. PubMed ID: 12122138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of membrane currents in pulmonary neuroepithelial bodies: hypoxia-sensitive airway chemoreceptors.
    Youngson C; Nurse C; Yeger H; Cutz E
    Adv Exp Med Biol; 1994; 360():179-82. PubMed ID: 7872081
    [No Abstract]   [Full Text] [Related]  

  • 14. The arachidonate-activable, NADPH oxidase-associated H+ channel. Evidence that gp91-phox functions as an essential part of the channel.
    Henderson LM; Banting G; Chappell JB
    J Biol Chem; 1995 Mar; 270(11):5909-16. PubMed ID: 7890722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells.
    O'Kelly I; Peers C; Kemp PJ
    Biochem Biophys Res Commun; 2001 May; 283(5):1131-4. PubMed ID: 11355890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of an NAD(P)H oxidase-like enzyme in superoxide anion and hydrogen peroxide generation by rat type II cells.
    van Klaveren RJ; Roelant C; Boogaerts M; Demedts M; Nemery B
    Thorax; 1997 May; 52(5):465-71. PubMed ID: 9176540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits.
    Yu L; Zhen L; Dinauer MC
    J Biol Chem; 1997 Oct; 272(43):27288-94. PubMed ID: 9341176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line.
    O'Kelly I; Stephens RH; Peers C; Kemp PJ
    Am J Physiol; 1999 Jan; 276(1):L96-L104. PubMed ID: 9887061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of slowly inactivating KV{alpha} current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine.
    Fu XW; Nurse C; Cutz E
    Am J Physiol Lung Cell Mol Physiol; 2007 Oct; 293(4):L892-902. PubMed ID: 17644754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.