BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8917703)

  • 1. Identification of a 54-kDa mitochondrial acetaminophen-binding protein as aldehyde dehydrogenase.
    Landin JS; Cohen SD; Khairallah EA
    Toxicol Appl Pharmacol; 1996 Nov; 141(1):299-307. PubMed ID: 8917703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the mouse liver 44-kDa acetaminophen-binding protein as a subunit of glutamine synthetase.
    Bulera SJ; Birge RB; Cohen SD; Khairallah EA
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):313-20. PubMed ID: 7570608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clofibrate pretreatment diminishes acetaminophen's selective covalent binding and hepatotoxicity.
    Manautou JE; Hoivik DJ; Tveit A; Hart SG; Khairallah EA; Cohen SD
    Toxicol Appl Pharmacol; 1994 Dec; 129(2):252-63. PubMed ID: 7992315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate dehydrogenase covalently binds to a reactive metabolite of acetaminophen.
    Halmes NC; Hinson JA; Martin BM; Pumford NR
    Chem Res Toxicol; 1996 Mar; 9(2):541-6. PubMed ID: 8839060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for common binding of acetaminophen and bromobenzene to the 58-kDa acetaminophen-binding protein.
    Manautou JE; Khairallah EA; Cohen SD
    J Toxicol Environ Health; 1995 Nov; 46(3):263-9. PubMed ID: 7473856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent binding of acetaminophen to N-10-formyltetrahydrofolate dehydrogenase in mice.
    Pumford NR; Halmes NC; Martin BM; Cook RJ; Wagner C; Hinson JA
    J Pharmacol Exp Ther; 1997 Jan; 280(1):501-5. PubMed ID: 8996234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional database of mouse liver proteins: changes in hepatic protein levels following treatment with acetaminophen or its nontoxic regioisomer 3-acetamidophenol.
    Fountoulakis M; Berndt P; Boelsterli UA; Crameri F; Winter M; Albertini S; Suter L
    Electrophoresis; 2000 Jun; 21(11):2148-61. PubMed ID: 10892726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of N-acetylcysteine on heat shock protein induction by acetaminophen in mouse liver.
    Salminen WF; Voellmy R; Roberts SM
    J Pharmacol Exp Ther; 1998 Jul; 286(1):519-24. PubMed ID: 9655897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution of proteins and enzymes in 3 submitochondrial fractions isolated from the internal mitochondrial membrane of the rat liver].
    Eugui J
    Rev Med Univ Navarra; 1987; 31(3):137-9. PubMed ID: 3507789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide.
    Dietze EC; Schäfer A; Omichinski JG; Nelson SD
    Chem Res Toxicol; 1997 Oct; 10(10):1097-103. PubMed ID: 9348431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence suggesting the 58-kDa acetaminophen binding protein is a preferential target for acetaminophen electrophile.
    Hoivik DJ; Manautou JE; Tveit A; Mankowski DC; Khairallah EA; Cohen SD
    Fundam Appl Toxicol; 1996 Jul; 32(1):79-86. PubMed ID: 8812234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunochemical comparison of 3'-hydroxyacetanilide and acetaminophen binding in mouse liver.
    Salminen WF; Roberts SM; Pumford NR; Hinson JA
    Drug Metab Dispos; 1998 Mar; 26(3):267-71. PubMed ID: 9492391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins.
    Mukhopadhyay A; Avramova LV; Weiner H
    Arch Biochem Biophys; 2002 Apr; 400(1):97-104. PubMed ID: 11913975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetaminophen-arylated proteins are detected in hepatic subcellular fractions and numerous extra-hepatic tissues in CD-1 and C57B1/6J mice.
    Bulera SJ; Cohen SD; Khairallah EA
    Toxicology; 1996 May; 109(2-3):85-99. PubMed ID: 8658549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity.
    Wolf KK; Wood SG; Hunt JA; Walton-Strong BW; Yasuda K; Lan L; Duan SX; Hao Q; Wrighton SA; Jeffery EH; Evans RM; Szakacs JG; von Moltke LL; Greenblatt DJ; Court MH; Schuetz EG; Sinclair PR; Sinclair JF
    Drug Metab Dispos; 2005 Dec; 33(12):1827-36. PubMed ID: 16141365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of acetaminophen on Na(+), K(+) ATPase and alkaline phosphatase on plasma membranes of renal proximal tubules.
    Trumper L; Coux G; Elías MM
    Toxicol Appl Pharmacol; 2000 Apr; 164(2):143-8. PubMed ID: 10764627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial deposition of calcium oxalate on uric acid rich stone matrix is induced by a 29 kDa protein.
    Srinivasan S; Kalaiselvi P; Varalakshmi P
    Clin Chim Acta; 2006 Feb; 364(1-2):267-74. PubMed ID: 16139257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice.
    Zaher H; Buters JT; Ward JM; Bruno MK; Lucas AM; Stern ST; Cohen SD; Gonzalez FJ
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):193-9. PubMed ID: 9772215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shift from biliary to urinary elimination of acetaminophen-glucuronide in acetaminophen-pretreated rats.
    Ghanem CI; Ruiz ML; Villanueva SS; Luquita MG; Catania VA; Jones B; Bengochea LA; Vore M; Mottino AD
    J Pharmacol Exp Ther; 2005 Dec; 315(3):987-95. PubMed ID: 16109740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.