These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8917783)
1. Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Kawamura S; Yokoyama S Vision Res; 1996 Sep; 36(18):2797-804. PubMed ID: 8917783 [TBL] [Abstract][Full Text] [Related]
2. Expression of visual and nonvisual opsins in American chameleon. Kawamura S; Yokoyama S Vision Res; 1997 Jul; 37(14):1867-71. PubMed ID: 9274772 [TBL] [Abstract][Full Text] [Related]
3. Paralogous origin of the rhodopsinlike opsin genes in lizards. Kawamura S; Yokoyama S J Mol Evol; 1995 Jun; 40(6):594-600. PubMed ID: 7643409 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the red visual pigment gene of the American chameleon (Anolis carolinensis). Kawamura S; Yokoyama S FEBS Lett; 1993 Jun; 323(3):247-51. PubMed ID: 8500618 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon. Takenaka N; Yokoyama S Gene; 2007 Sep; 399(1):26-32. PubMed ID: 17590287 [TBL] [Abstract][Full Text] [Related]
6. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
7. Multiple origins of the green-sensitive opsin genes in fish. Register EA; Yokoyama R; Yokoyama S J Mol Evol; 1994 Sep; 39(3):268-73. PubMed ID: 7932788 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Kawamura S; Yokoyama S Vision Res; 1998 Jan; 38(1):37-44. PubMed ID: 9474373 [TBL] [Abstract][Full Text] [Related]
9. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. Yokoyama S; Blow NS Gene; 2001 Oct; 276(1-2):117-25. PubMed ID: 11591478 [TBL] [Abstract][Full Text] [Related]
10. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181 [TBL] [Abstract][Full Text] [Related]
11. Functional diversification of lepidopteran opsins following gene duplication. Briscoe AD Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576 [TBL] [Abstract][Full Text] [Related]
12. The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart. Hunt DM; Arrese CA; von Dornum M; Rodger J; Oddy A; Cowing JA; Ager EI; Bowmaker JK; Beazley LD; Shand J Gene; 2003 Dec; 323():157-62. PubMed ID: 14659889 [TBL] [Abstract][Full Text] [Related]
14. Cloning of the rhodopsin-encoding gene from the rod-less lizard Anolis carolinensis. Kawamura S; Yokoyama S Gene; 1994 Nov; 149(2):267-70. PubMed ID: 7959000 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of rod opsin cDNA from the Old World monkey, Macaca fascicularis. Nickells RW; Burgoyne CF; Quigley HA; Zack DJ Invest Ophthalmol Vis Sci; 1995 Jan; 36(1):72-82. PubMed ID: 7822161 [TBL] [Abstract][Full Text] [Related]
16. Primary structure of locust opsins: a speculative model which may account for ultraviolet wavelength light detection. Towner P; Harris P; Wolstenholme AJ; Hill C; Worm K; Gärtner W Vision Res; 1997 Mar; 37(5):495-503. PubMed ID: 9156194 [TBL] [Abstract][Full Text] [Related]
17. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. Carleton KL; Spady TC; Cote RH J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624 [TBL] [Abstract][Full Text] [Related]
18. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Kawamura S; Kubotera N J Mol Evol; 2004 Mar; 58(3):314-21. PubMed ID: 15045486 [TBL] [Abstract][Full Text] [Related]
19. A novel and ancient vertebrate opsin. Soni BG; Foster RG FEBS Lett; 1997 Apr; 406(3):279-83. PubMed ID: 9136902 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Porter ML; Cronin TW; McClellan DA; Crandall KA Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]