These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8917821)

  • 1. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age.
    Cideciyan AV; Jacobson SG
    Vision Res; 1996 Aug; 36(16):2609-21. PubMed ID: 8917821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the cone ERG in infants.
    Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3458-62. PubMed ID: 16123452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave.
    Hood DC; Birch DG
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2948-61. PubMed ID: 8206712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of electroretinogram and rod phototransduction response in human infants.
    Breton ME; Quinn GE; Schueller AW
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1588-602. PubMed ID: 7601640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cone electroretinogram in retinopathy of prematurity.
    Fulton AB; Hansen RM; Moskowitz A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):814-9. PubMed ID: 18235032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related decline in rod phototransduction sensitivity in rhesus monkeys fed an n-3 fatty acid-deficient diet.
    Jeffrey BG; Neuringer M
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4360-7. PubMed ID: 19369246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats.
    Pinilla I; Lund RD; Sauvé Y
    Vision Res; 2004; 44(21):2467-74. PubMed ID: 15358082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod transduction parameters from the a wave of local receptor populations.
    Nusinowitz S; Hood DC; Birch DG
    J Opt Soc Am A Opt Image Sci Vis; 1995 Oct; 12(10):2259-66. PubMed ID: 7500207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subjects with unilateral neovascular AMD have bilateral delays in rod-mediated phototransduction activation kinetics and in dark adaptation recovery.
    Dimopoulos IS; Tennant M; Johnson A; Fisher S; Freund PR; Sauvé Y
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5186-95. PubMed ID: 23821195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototransduction in human cones measured using the alpha-wave of the ERG.
    Hood DC; Birch DG
    Vision Res; 1995 Oct; 35(20):2801-10. PubMed ID: 8533321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability.
    Birch DG; Hood DC; Locke KG; Hoffman DR; Tzekov RT
    Arch Ophthalmol; 2002 Aug; 120(8):1045-51. PubMed ID: 12149058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rodent electroretinography: methods for extraction and interpretation of rod and cone responses.
    Weymouth AE; Vingrys AJ
    Prog Retin Eye Res; 2008 Jan; 27(1):1-44. PubMed ID: 18042420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sites of disease action in a retinal dystrophy with supernormal and delayed rod electroretinogram b-waves.
    Hood DC; Cideciyan AV; Halevy DA; Jacobson SG
    Vision Res; 1996 Mar; 36(6):889-901. PubMed ID: 8736222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.
    Verdon WA; Schneck ME; Haegerstrom-Portnoy G
    Vision Res; 2003 Sep; 43(19):2089-99. PubMed ID: 12842161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E; Kupenova P
    Vision Res; 2009 Jul; 49(15):2001-10. PubMed ID: 19463849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.