These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8918468)

  • 21. Molecular characterization of AmiC, a positive regulator in acetamidase operon of Mycobacterium smegmatis.
    Venkatesan A; Palaniyandi K; Narayanan S
    Cell Stress Chaperones; 2018 Jul; 23(4):539-550. PubMed ID: 29273966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antitermination of transcription of catabolic operons.
    Rutberg B
    Mol Microbiol; 1997 Feb; 23(3):413-21. PubMed ID: 9044276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
    Schilling O; Langbein I; Müller M; Schmalisch MH; Stülke J
    Nucleic Acids Res; 2004; 32(9):2853-64. PubMed ID: 15155854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa.
    Drew R
    J Gen Microbiol; 1984 Dec; 130(12):3101-11. PubMed ID: 6440948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis.
    Arnaud M; Débarbouillé M; Rapoport G; Saier MH; Reizer J
    J Biol Chem; 1996 Aug; 271(31):18966-72. PubMed ID: 8702561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Search for Ribonucleic Antiterminator Sites in Bacterial Genomes: Not Only Antitermination?
    Gordon N; Rosenblum R; Nussbaum-Shochat A; Eliahoo E; Amster-Choder O
    J Mol Microbiol Biotechnol; 2015; 25(2-3):143-53. PubMed ID: 26159075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of molecular mechanisms controlling fabAB transcription in Pseudomonas aeruginosa.
    Schweizer HP; Choi KH
    PLoS One; 2012; 7(10):e45646. PubMed ID: 23056212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionary comparison of ribosomal operon antitermination function.
    Arnvig KB; Zeng S; Quan S; Papageorge A; Zhang N; Villapakkam AC; Squires CL
    J Bacteriol; 2008 Nov; 190(21):7251-7. PubMed ID: 18757535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis.
    Kumarevel T
    Biophys Chem; 2007 Jun; 128(1):1-12. PubMed ID: 17395359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction.
    Dubey AK; Baker CS; Romeo T; Babitzke P
    RNA; 2005 Oct; 11(10):1579-87. PubMed ID: 16131593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region.
    McGraw AP; Bevilacqua PC; Babitzke P
    RNA; 2007 Nov; 13(11):2020-33. PubMed ID: 17881743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional analysis of the bglP gene from Streptococcus mutans.
    Cote CK; Honeyman AL
    BMC Microbiol; 2006 Apr; 6():37. PubMed ID: 16630357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa.
    Gliese N; Khodaverdi V; Görisch H
    Arch Microbiol; 2010 Jan; 192(1):1-14. PubMed ID: 19902179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.
    Karmali A; Pacheco R; Tata R; Brown P
    Mol Biotechnol; 2001 Mar; 17(3):201-12. PubMed ID: 11434308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of two new genes in the Pseudomonas aeruginosa amidase operon, encoding an ATPase (AmiB) and a putative integral membrane protein (AmiS).
    Wilson SA; Williams RJ; Pearl LH; Drew RE
    J Biol Chem; 1995 Aug; 270(32):18818-24. PubMed ID: 7642533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NasT-mediated antitermination plays an essential role in the regulation of the assimilatory nitrate reductase operon in Azotobacter vinelandii.
    Wang B; Pierson LS; Rensing C; Gunatilaka MK; Kennedy C
    Appl Environ Microbiol; 2012 Sep; 78(18):6558-67. PubMed ID: 22773651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. T box transcription antitermination riboswitch: influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element.
    Fauzi H; Agyeman A; Hines JV
    Biochim Biophys Acta; 2009 Mar; 1789(3):185-91. PubMed ID: 19152843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.