BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8919008)

  • 1. The hippocampus and reward: effects of hippocampal lesions on progressive-ratio responding.
    Schmelzeis MC; Mittleman G
    Behav Neurosci; 1996 Oct; 110(5):1049-66. PubMed ID: 8919008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of excitotoxic lesions of the pedunculopontine tegmental nucleus on performance of a progressive ratio schedule of reinforcement.
    Alderson HL; Brown VJ; Latimer MP; Brasted PJ; Robertson AH; Winn P
    Neuroscience; 2002; 112(2):417-25. PubMed ID: 12044459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine.
    Burns LH; Robbins TW; Everitt BJ
    Behav Brain Res; 1993 Jun; 55(2):167-83. PubMed ID: 8357526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical, hippocampal, and striatal mediation of schedule-induced behaviors.
    Mittleman G; Whishaw IQ; Jones GH; Koch M; Robbins TW
    Behav Neurosci; 1990 Jun; 104(3):399-409. PubMed ID: 2354035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding.
    Beninger RJ; Ranaldi R
    Behav Brain Res; 1993 Jun; 55(2):203-12. PubMed ID: 8395180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two types of motivation revealed by ibotenic acid nucleus accumbens lesions: dissociation of food carrying and hoarding and the role of primary and incentive motivation.
    Whishaw IQ; Kornelsen RA
    Behav Brain Res; 1993 Jun; 55(2):283-95. PubMed ID: 8357531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost.
    Bowman EM; Brown VJ
    Exp Brain Res; 1998 Dec; 123(4):439-48. PubMed ID: 9870603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two discrete nucleus accumbens projection areas differentially mediate cocaine self-administration in the rat.
    Robledo P; Koob GF
    Behav Brain Res; 1993 Jun; 55(2):159-66. PubMed ID: 8395179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus accumbens dopamine and work requirements on interval schedules.
    Correa M; Carlson BB; Wisniecki A; Salamone JD
    Behav Brain Res; 2002 Dec; 137(1-2):179-87. PubMed ID: 12445723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies.
    Mistlberger RE; Mumby DG
    Behav Brain Res; 1992 Apr; 47(2):159-68. PubMed ID: 1590946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum.
    Horvitz JC
    Behav Brain Res; 2002 Dec; 137(1-2):65-74. PubMed ID: 12445716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement.
    Lee A; Clancy S; Fleming AS
    Behav Brain Res; 2000 Mar; 108(2):215-31. PubMed ID: 10701665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement.
    Lee A; Clancy S; Fleming AS
    Behav Brain Res; 1999 Apr; 100(1-2):15-31. PubMed ID: 10212050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory for magnitude of reinforcement: dissociation between the amygdala and hippocampus.
    Kesner RP; Williams JM
    Neurobiol Learn Mem; 1995 Nov; 64(3):237-44. PubMed ID: 8564377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal responses in the ventral striatum of the behaving macaque.
    Williams GV; Rolls ET; Leonard CM; Stern C
    Behav Brain Res; 1993 Jun; 55(2):243-52. PubMed ID: 8395182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limbic cortical-ventral striatal systems underlying appetitive conditioning.
    Parkinson JA; Cardinal RN; Everitt BJ
    Prog Brain Res; 2000; 126():263-85. PubMed ID: 11105652
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement.
    Burns LH; Everitt BJ; Robbins TW
    Behav Brain Res; 1999 Apr; 100(1-2):123-33. PubMed ID: 10212059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relationship between anticipatory behaviour in a Pavlovian paradigm and Pavlovian-to-Instrumental Transfer in rats (Rattus norvegicus).
    van den Bos R; van der Harst J; Vijftigschild N; Spruijt B; van Luijtelaar G; Maes R
    Behav Brain Res; 2004 Aug; 153(2):397-408. PubMed ID: 15265635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An examination of the effects of bilateral excitotoxic lesions of the pedunculopontine tegmental nucleus on responding to sucrose reward.
    Keating GL; Walker SC; Winn P
    Behav Brain Res; 2002 Aug; 134(1-2):217-28. PubMed ID: 12191808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of the hippocampus, amygdala, and dorsal striatum to the response elicited by reward reduction.
    Salinas JA; White NM
    Behav Neurosci; 1998 Aug; 112(4):812-26. PubMed ID: 9733189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.