These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8919298)

  • 41. Retinoic acid has light-adaptive effects on horizontal cells in the retina.
    Weiler R; Schultz K; Pottek M; Tieding S; Janssen-Bienhold U
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7139-44. PubMed ID: 9618552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitric oxide induces light-adaptive morphological changes in retinal neurones.
    Greenstreet EH; Djamgoz MB
    Neuroreport; 1994 Dec; 6(1):109-12. PubMed ID: 7703396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ERG OFF response in frog retina: light adaptation and effect of 2-amino-4-phosphonobutyrate.
    Popova E; Kupenova P; Vitanova L; Mitova L
    Acta Physiol Scand; 1995 Jul; 154(3):377-86. PubMed ID: 7572235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dopaminergic regulation of horizontal cell gap junction particle density in goldfish retina.
    Baldridge WH; Ball AK; Miller RG
    J Comp Neurol; 1987 Nov; 265(3):428-36. PubMed ID: 3693614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones.
    Fahrenfort I; Habets RL; Spekreijse H; Kamermans M
    J Gen Physiol; 1999 Oct; 114(4):511-24. PubMed ID: 10498670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells.
    Wang Y; Mangel SC
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4655-60. PubMed ID: 8643459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastructure and organisation of the retina and pigment epithelium in the cutlips minnow, Exoglossum maxillingua (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):55-69. PubMed ID: 8720448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effects of prolonged darkness and background illumination on cone horizontal cells in carp retina: a correlative study of morphology and physiology].
    Zhang J; Song XE; Wang HH; Yang XL
    Sheng Li Xue Bao; 1992 Apr; 44(2):155-63. PubMed ID: 1320293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light-dependent change of cone-horizontal cell interactions in carp retina.
    Weiler R; Wagner HJ
    Brain Res; 1984 Apr; 298(1):1-9. PubMed ID: 6326947
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light-/dark-induced changes in rhabdom structure in the retina of Octopus bimaculoides.
    Torres SC; Camacho JL; Matsumoto B; Kuramoto RT; Robles LJ
    Cell Tissue Res; 1997 Oct; 290(1):167-74. PubMed ID: 9377636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina.
    Biehlmaier O; Neuhauss SC; Kohler K
    J Neurobiol; 2003 Sep; 56(3):222-36. PubMed ID: 12884262
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spinule formulation in the fish retina: is there an involvement of actin and tubulin? An electronmicroscopic immunogold study.
    Schmitz Y; Kohler K
    J Neurocytol; 1993 Mar; 22(3):205-14. PubMed ID: 8478642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina.
    Schultz K; Janssen-Bienhold U; Gundelfinger ED; Kreutz MR; Weiler R
    J Comp Neurol; 2004 Nov; 479(1):84-93. PubMed ID: 15389610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphologic changes in teleost primary and secondary retinal cells following brief exposure to light.
    Wagner HJ; Douglas RH
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):24-9. PubMed ID: 6826311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of connexon densities in gap junctions of horizontal cell perikarya and axon terminals in fish retina: effects of light/dark cycles, interruption of the optic nerve and application of dopamine.
    Kurz-Isler G; Voigt T; Wolburg H
    Cell Tissue Res; 1992 May; 268(2):267-75. PubMed ID: 1319840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat.
    Maguire G; Hamasaki DI
    J Neurophysiol; 1994 Aug; 72(2):730-41. PubMed ID: 7983531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retinoid cycling proteins redistribute in light-/dark-adapted octopus retinas.
    Robles LJ; Camacho JL; Torres SC; Flores A; Fariss RN; Matsumoto B
    J Comp Neurol; 1995 Aug; 358(4):605-14. PubMed ID: 7593753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Threshold and chromatic sensitivity changes in fish cone horizontal cells following prolonged darkness.
    Mangel SC; Baldridge WH; Weiler R; Dowling JE
    Brain Res; 1994 Oct; 659(1-2):55-61. PubMed ID: 7820681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.