These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8919773)

  • 1. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells.
    Loessner MJ; Rees CE; Stewart GS; Scherer S
    Appl Environ Microbiol; 1996 Apr; 62(4):1133-40. PubMed ID: 8919773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods.
    Loessner MJ; Rudolf M; Scherer S
    Appl Environ Microbiol; 1997 Aug; 63(8):2961-5. PubMed ID: 9251182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive and Fast Diagnostics of Viable
    Kretzer JW; Schmelcher M; Loessner MJ
    Viruses; 2018 Nov; 10(11):. PubMed ID: 30428537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Reporter Phages for Rapid Bioluminescence-Based Detection and Differentiation of Viable
    Meile S; Sarbach A; Du J; Schuppler M; Saez C; Loessner MJ; Kilcher S
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reporter bacteriophage A511::celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells.
    Hagens S; de Wouters T; Vollenweider P; Loessner MJ
    Bacteriophage; 2011 May; 1(3):143-151. PubMed ID: 22164348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of Bacteriophages Y2::
    Born Y; Fieseler L; Thöny V; Leimer N; Duffy B; Loessner MJ
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389547
    [No Abstract]   [Full Text] [Related]  

  • 7. 'Bioluminescent' reporter phage for the detection of Category A bacterial pathogens.
    Schofield DA; Molineux IJ; Westwater C
    J Vis Exp; 2011 Jul; (53):e2740. PubMed ID: 21775956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath protein genes cps and tsh.
    Loessner MJ; Scherer S
    J Bacteriol; 1995 Nov; 177(22):6601-9. PubMed ID: 7592439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods.
    Guenther S; Huwyler D; Richard S; Loessner MJ
    Appl Environ Microbiol; 2009 Jan; 75(1):93-100. PubMed ID: 19011076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.
    Schmelcher M; Loessner MJ
    Methods Mol Biol; 2014; 1157():141-56. PubMed ID: 24792555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk.
    Zhang H; Bao H; Billington C; Hudson JA; Wang R
    Food Microbiol; 2012 Aug; 31(1):133-6. PubMed ID: 22475951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and engineering of a Listeria grayi bacteriophage.
    Erickson S; Paulson J; Brown M; Hahn W; Gil J; Barron-Montenegro R; Moreno-Switt AI; Eisenberg M; Nguyen MM
    Sci Rep; 2021 Sep; 11(1):18947. PubMed ID: 34556683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants.
    Sugihara J; Baldwin TO
    Biochemistry; 1988 Apr; 27(8):2872-80. PubMed ID: 2840951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells.
    Kirchner G; Roberts JL; Gustafson GD; Ingolia TD
    Gene; 1989 Sep; 81(2):349-54. PubMed ID: 2680772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Detection of Listeria by Bacteriophage Amplification and SERS-Lateral Flow Immunochromatography.
    Stambach NR; Carr SA; Cox CR; Voorhees KJ
    Viruses; 2015 Dec; 7(12):6631-41. PubMed ID: 26694448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Listeria prophages in lysogenic isolates from foods and food processing environments.
    Vu HTK; Benjakul S; Vongkamjan K
    PLoS One; 2019; 14(4):e0214641. PubMed ID: 30934000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostability of bacterial luciferase expressed in different microbes.
    Mackey BM; Cross D; Park SF
    J Appl Bacteriol; 1994 Aug; 77(2):149-54. PubMed ID: 7961187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes.
    Bron PA; Monk IR; Corr SC; Hill C; Gahan CG
    Appl Environ Microbiol; 2006 Apr; 72(4):2876-84. PubMed ID: 16597994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b.
    Cheng Y; Promadej N; Kim JW; Kathariou S
    Appl Environ Microbiol; 2008 Mar; 74(5):1653-5. PubMed ID: 18192405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The beta subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42 degrees C.
    Escher A; O'Kane DJ; Szalay AA
    Mol Gen Genet; 1991 Dec; 230(3):385-93. PubMed ID: 1685011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.