BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8919783)

  • 1. Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum.
    Drozd C; Schwartzbrod J
    Appl Environ Microbiol; 1996 Apr; 62(4):1227-32. PubMed ID: 8919783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pretreatment and experimental conditions on electrophoretic mobility and hydrophobicity of Cryptosporidium parvum oocysts.
    Brush CF; Walter MF; Anguish LJ; Ghiorse WC
    Appl Environ Microbiol; 1998 Nov; 64(11):4439-45. PubMed ID: 9797304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface characteristics on the stability of Cryptosporidium parvum oocysts.
    Butkus MA; Bays JT; Labare MP
    Appl Environ Microbiol; 2003 Jul; 69(7):3819-25. PubMed ID: 12839749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.
    Bradford SA; Kim H; Headd B; Torkzaban S
    Environ Sci Technol; 2016 Feb; 50(3):1295-303. PubMed ID: 26720840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of microspheres as surrogates for Cryptosporidium parvum oocysts in filtration experiments.
    Dai X; Hozalski RM
    Environ Sci Technol; 2003 Mar; 37(5):1037-42. PubMed ID: 12666938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of NOM and biofilm on the removal of Cryptosporidium parvum oocysts in rapid filters.
    Dai X; Hozalski RM
    Water Res; 2002 Aug; 36(14):3523-32. PubMed ID: 12230198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion of Cryptosporidium parvum and Giardia lamblia to solid surfaces: the role of surface charge and hydrophobicity.
    Dai X; Boll J; Hayes ME; Aston DE
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):259-63. PubMed ID: 15261066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy.
    Gao X; Chorover J
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):169-76. PubMed ID: 19269797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from water samples.
    Karanis P; Kimura A
    Lett Appl Microbiol; 2002; 34(6):444-9. PubMed ID: 12028427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of surface proteins in the deposition kinetics of Cryptosporidium parvum oocysts.
    Kuznar ZA; Elimelech M
    Langmuir; 2005 Jan; 21(2):710-6. PubMed ID: 15641844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration.
    Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M
    Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and fate of Cryptosporidium parvum oocysts in intermittent sand filters.
    Logan AJ; Stevik TK; Siegrist RL; Rønn RM
    Water Res; 2001 Dec; 35(18):4359-69. PubMed ID: 11763038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface.
    Liu Y; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Biomacromolecules; 2010 Aug; 11(8):2109-15. PubMed ID: 20690718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion kinetics of viable Cryptosporidium parvum oocysts to quartz surfaces.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2004 Dec; 38(24):6839-45. PubMed ID: 15669347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and magnetic material on immunomagnetic separation of Cryptosporidium oocysts from concentrated water samples.
    Kuhn RC; Rock CM; Oshima KH
    Appl Environ Microbiol; 2002 Apr; 68(4):2066-70. PubMed ID: 11916735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.
    Pang L; Nowostawska U; Weaver L; Hoffman G; Karmacharya A; Skinner A; Karki N
    Environ Sci Technol; 2012 Nov; 46(21):11779-87. PubMed ID: 22978441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface complexation of carboxylate adheres Cryptosporidium parvum oocysts to the hematite-water interface.
    Gao X; Metge DW; Ray C; Harvey RW; Chorover J
    Environ Sci Technol; 2009 Oct; 43(19):7423-9. PubMed ID: 19848156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.