These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8919805)

  • 1. Priming effect of substrate addition in soil-based biodegradation tests.
    Shen J; Bartha R
    Appl Environ Microbiol; 1996 Apr; 62(4):1428-30. PubMed ID: 8919805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution.
    el-Din Sharabi N; Bartha R
    Appl Environ Microbiol; 1993 Apr; 59(4):1201-5. PubMed ID: 8476294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic efficiency and turnover of soil microbial communities in biodegradation tests.
    Shen J; Bartha R
    Appl Environ Microbiol; 1996 Jul; 62(7):2411-5. PubMed ID: 8779580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The design and use of aerated microcosms in mineralization studies.
    Haderlein A; Bonin Aly-Hassan MC; Legros R; Ramsay BA
    Biodegradation; 1999; 10(6):437-42. PubMed ID: 11068830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming effect as determined by adding 14C-glucose to modified controlled composting test.
    Tuomela M; Hatakka A; Karjomaa S; Itävaara M
    Biodegradation; 2002; 13(2):131-40. PubMed ID: 12449315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil-specific response functions of organic matter mineralization to the availability of labile carbon.
    Paterson E; Sim A
    Glob Chang Biol; 2013 May; 19(5):1562-71. PubMed ID: 23505211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement.
    Schoefs O; Perrier M; Samson R
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):53-61. PubMed ID: 14658016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of 14C-labeled anthracene and hexadecane in compost-manured soil.
    Kästner M; Lotter S; Heerenklage J; Breuer-Jammali M; Stegmann R; Mahro B
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1128-35. PubMed ID: 8590663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Use of carbon isotope composition for characterization of microbial activity in arable soils].
    Ziakun AM; Dilly O
    Prikl Biokhim Mikrobiol; 2005; 41(5):582-91. PubMed ID: 16240661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of copper on the degradation of phenanthrene by soil micro-organisms.
    Sokhn J; De Leij FA; Hart TD; Lynch JM
    Lett Appl Microbiol; 2001 Aug; 33(2):164-8. PubMed ID: 11472527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of potassium salts and distillery effluent on carbon mineralization in soil.
    Chandra S; Joshi HC; Pathak H; Jain MC; Kalra N
    Bioresour Technol; 2002 Jul; 83(3):255-7. PubMed ID: 12094803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm.
    Radosevich M; Traina SJ; Tuovinen OH
    Biodegradation; 1996 Apr; 7(2):137-49. PubMed ID: 8882806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing biodegradation of phenanthrene dissolved in nonaqueous-phase liquids.
    Birman I; Alexander M
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):267-72. PubMed ID: 8920200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of pyrogenically-modified substrates on mineralization activity and growth strategies of microorganisms of the gray forest soil].
    Zhuravleva AI; Miakshina TN; Blagodatskaia EV
    Mikrobiologiia; 2011; 80(2):207-18. PubMed ID: 21774186
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia pickettii in soil and compost.
    Hundt K; Wagner M; Becher D; Hammer E; Schauer F
    Chemosphere; 1998 Apr; 36(10):2321-35. PubMed ID: 9566302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labile carbon retention compensates for CO2 released by priming in forest soils.
    Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y
    Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of di(2-ethylhexyl)phthalate in a typical tropical soil.
    Carrara SM; Morita DM; Boscov ME
    J Hazard Mater; 2011 Dec; 197():40-8. PubMed ID: 22014440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries.
    Stroud JL; Paton GI; Semple KT
    Chemosphere; 2009 Sep; 77(1):123-8. PubMed ID: 19487012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture.
    Marinucci AC; Bartha R
    Appl Environ Microbiol; 1979 Nov; 38(5):811-7. PubMed ID: 120698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of surfactants and slurrying to enhance the biodegradation in soil of compounds initially dissolved in nonaqueous-phase liquids.
    Fu MH; Alexander M
    Appl Microbiol Biotechnol; 1995 Jul; 43(3):551-8. PubMed ID: 7632403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.