These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8919873)

  • 1. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda.
    Nunn GB; Theisen BF; Christensen B; Arctander P
    J Mol Evol; 1996 Feb; 42(2):211-23. PubMed ID: 8919873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
    Hancock JM; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):377-91. PubMed ID: 3405077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of transcript structure and base composition of rDNA expansion segment D3 in ticks.
    McLain DK
    Heredity (Edinb); 2001 Nov; 87(Pt 5):544-57. PubMed ID: 11869345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sequence of 28S ribosomal RNA varies within and between human cell lines.
    Leffers H; Andersen AH
    Nucleic Acids Res; 1993 Mar; 21(6):1449-55. PubMed ID: 8464736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A secondary structural model of the 28S rRNA expansion segments D2 and D3 for Chalcidoid wasps (Hymenoptera: Chalcidoidea).
    Gillespie JJ; Munro JB; Heraty JM; Yoder MJ; Owen AK; Carmichael AE
    Mol Biol Evol; 2005 Jul; 22(7):1593-608. PubMed ID: 15843598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A secondary structural model of the 28S rRNA expansion segments D2 and D3 from rootworms and related leaf beetles (Coleoptera: Chrysomelidae; Galerucinae).
    Gillespie J; Cannone J; Gutell R; Cognato A
    Insect Mol Biol; 2004 Oct; 13(5):495-518. PubMed ID: 15373807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments.
    Ruiz Linares A; Hancock JM; Dover GA
    J Mol Biol; 1991 Jun; 219(3):381-90. PubMed ID: 1904940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans.
    Crease TJ; Taylor DJ
    Mol Biol Evol; 1998 Nov; 15(11):1430-46. PubMed ID: 12572607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics.
    Held C
    Mol Phylogenet Evol; 2000 May; 15(2):165-78. PubMed ID: 10837149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity.
    Verovnik R; Sket B; Trontelj P
    Mol Ecol; 2005 Dec; 14(14):4355-69. PubMed ID: 16313598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic analysis of slippage-like sequence variation in the V4 rRNA expansion segment in tiger beetles (Cicindelidae).
    Vogler AP; Welsh A; Hancock JM
    Mol Biol Evol; 1997 Jan; 14(1):6-19. PubMed ID: 9000749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.
    Whiting MF; Carpenter JC; Wheeler QD; Wheeler WC
    Syst Biol; 1997 Mar; 46(1):1-68. PubMed ID: 11975347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features.
    Kilpert F; Podsiadlowski L
    BMC Genomics; 2006 Sep; 7():241. PubMed ID: 16987408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.
    Subbotin SA; Ragsdale EJ; Mullens T; Roberts PA; Mundo-Ocampo M; Baldwin JG
    Mol Phylogenet Evol; 2008 Aug; 48(2):491-505. PubMed ID: 18514550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits.
    Larsson SL; Nygård O
    Biochemistry; 2001 Mar; 40(10):3222-31. PubMed ID: 11258939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the primary sequence and secondary structure of the unusually long SSU rRNA of the soil bug, Armadillidium vulgare.
    Choe CP; Hancock JM; Hwang UW; Kim W
    J Mol Evol; 1999 Dec; 49(6):798-805. PubMed ID: 10594181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of ribosomal RNA evolution in salamanders.
    Larson A; Wilson AC
    Mol Biol Evol; 1989 Mar; 6(2):131-54. PubMed ID: 2716516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear 28S gene fragment D3 as species marker in oribatid mites (Acari, Oribatida) from German peatlands.
    Lehmitz R; Decker P
    Exp Appl Acarol; 2017 Mar; 71(3):259-276. PubMed ID: 28405837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Expansion Segments of Human 28S rRNA Match MicroRNAs Much Above 18S rRNA or Core Segments.
    Parker MS; Balasubramaniam A; Parker SL
    Microrna; 2018; 7(2):128-137. PubMed ID: 29595121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the mega-diverse genus Ocyptamus (Diptera, Syrphidae) monophyletic? Evidence from molecular characters including the secondary structure of 28S rRNA.
    Mengual X; Ståhls G; Rojo S
    Mol Phylogenet Evol; 2012 Jan; 62(1):191-205. PubMed ID: 21985963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.