BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8919883)

  • 1. Probabilistic reconstruction of ancestral protein sequences.
    Koshi JM; Goldstein RA
    J Mol Evol; 1996 Feb; 42(2):313-20. PubMed ID: 8919883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of ancestral protein sequences and its applications.
    Cai W; Pei J; Grishin NV
    BMC Evol Biol; 2004 Sep; 4():33. PubMed ID: 15377393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.
    Bastien O; Ortet P; Roy S; Maréchal E
    BMC Bioinformatics; 2005 Mar; 6():49. PubMed ID: 15757521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and accurate estimation of ancestral protein sequences.
    Hall BG
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5431-6. PubMed ID: 16567642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods.
    Zhang J; Nei M
    J Mol Evol; 1997; 44 Suppl 1():S139-46. PubMed ID: 9071022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast algorithm for joint reconstruction of ancestral amino acid sequences.
    Pupko T; Pe'er I; Shamir R; Graur D
    Mol Biol Evol; 2000 Jun; 17(6):890-6. PubMed ID: 10833195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site interdependence attributed to tertiary structure in amino acid sequence evolution.
    Rodrigue N; Lartillot N; Bryant D; Philippe H
    Gene; 2005 Mar; 347(2):207-17. PubMed ID: 15733531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A branch-and-bound algorithm for the inference of ancestral amino-acid sequences when the replacement rate varies among sites: Application to the evolution of five gene families.
    Pupko T; Pe'er I; Hasegawa M; Graur D; Friedman N
    Bioinformatics; 2002 Aug; 18(8):1116-23. PubMed ID: 12176835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the accuracy of ancestral protein reconstruction methods.
    Williams PD; Pollock DD; Blackburne BP; Goldstein RA
    PLoS Comput Biol; 2006 Jun; 2(6):e69. PubMed ID: 16789817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.
    Krishnan NM; Seligmann H; Stewart CB; De Koning AP; Pollock DD
    Mol Biol Evol; 2004 Oct; 21(10):1871-83. PubMed ID: 15229290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic inference in protein superfamilies: analysis of SH2 domains.
    Sjölander K
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():165-74. PubMed ID: 9783222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins.
    Knudsen B; Miyamoto MM
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14512-7. PubMed ID: 11734650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrated Method to Reconstruct Ancient Proteins.
    Garcia AK; Fer E; Sephus C; Kacar B
    Methods Mol Biol; 2022; 2569():267-281. PubMed ID: 36083453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical algorithm for estimation of the maximum likelihood ancestral reconstruction error.
    Hickey G; Blanchette M
    Pac Symp Biocomput; 2010; ():31-42. PubMed ID: 19908355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ancestral sequence reconstruction dissects structural and functional differences among eosinophil ribonucleases.
    Tran TTQ; Narayanan C; Loes AN; Click TH; Pham NTH; Létourneau M; Harms MJ; Calmettes C; Agarwal PK; Doucet N
    J Biol Chem; 2024 May; 300(5):107280. PubMed ID: 38588810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of ancestral protein reconstruction in understanding protein function: GFP-like proteins.
    Chang BS; Ugalde JA; Matz MV
    Methods Enzymol; 2005; 395():652-70. PubMed ID: 15865989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian estimation of ancestral character states on phylogenies.
    Pagel M; Meade A; Barker D
    Syst Biol; 2004 Oct; 53(5):673-84. PubMed ID: 15545248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of inference of ancestral nucleotide and amino acid sequences.
    Yang Z; Kumar S; Nei M
    Genetics; 1995 Dec; 141(4):1641-50. PubMed ID: 8601501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.