These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8920170)

  • 1. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.
    Dose K; Klein A
    Orig Life Evol Biosph; 1996 Feb; 26(1):47-59. PubMed ID: 8920170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA.
    Slieman TA; Nicholson WL
    Appl Environ Microbiol; 2000 Jan; 66(1):199-205. PubMed ID: 10618224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of Bacillus subtilis spores to space environment: results from experiments in space.
    Horneck G
    Orig Life Evol Biosph; 1993 Feb; 23(1):37-52. PubMed ID: 8433836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thymine photoproduct formation and inactivation of intact spores of Bacillus subtilis irradiated with short wavelength UV (200-300nm) at atmospheric pressure and in vacuo.
    Lindberg C; Horneck G
    Adv Space Res; 1992; 12(4):275-9. PubMed ID: 11538149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short-wavelength (200-300 nm) UV at atmospheric pressure and in vacuo.
    Lindberg C; Horneck G
    J Photochem Photobiol B; 1991 Oct; 11(1):69-80. PubMed ID: 1791495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of vacuum-UV radiation (50-190nm) on microorganisms and DNA.
    Ito T
    Adv Space Res; 1992; 12(4):249-53. PubMed ID: 11538145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability of Bacillus subtilis spores exposed to space environment in the M-191 experiment system aboard Apollo 16.
    Bucker H; Horneck G; Wollenhaupt H; Schwager M; Taylor GR
    Life Sci Space Res; 1974; 12():209-13. PubMed ID: 11911146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of bacterial spores under some simulated lunar surface conditions.
    Horneck G; Bucker H; Wollenhaupt H
    Life Sci Space Res; 1971; 9():119-24. PubMed ID: 12206178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological responses to space: results of the experiment "Exobiological Unit" of ERA on EURECA I.
    Horneck G; Eschweiler U; Reitz G; Wehner J; Willimek R; Strauch K
    Adv Space Res; 1995; 16(8):105-18. PubMed ID: 11542695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation.
    Munakata N; Saito M; Hieda K
    Photochem Photobiol; 1991 Nov; 54(5):761-8. PubMed ID: 1798752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability of
    Fayolle EC; Noell AC; Johnson PV; Hodyss R; Ponce A
    Astrobiology; 2020 Jul; 20(7):889-896. PubMed ID: 32580565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERA-experiment "Space Biochemistry".
    Dose K; Bieger-Dose A; Dillmann R; Gill M; Kerz O; Klein A; Meinert H; Nawroth T; Risi S; Stridde C
    Adv Space Res; 1995; 16(8):119-29. PubMed ID: 11542696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm.
    Wang D; Oppenländer T; El-Din MG; Bolton JR
    Photochem Photobiol; 2010; 86(1):176-81. PubMed ID: 19912558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA stability and survival of Bacillus subtilis spores in extreme dryness.
    Dose K; Gill M
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):277-93. PubMed ID: 7708386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-strand breaks limit survival in extreme dryness.
    Dose K; Bieger-Dose A; Kerz O; Gill M
    Orig Life Evol Biosph; 1991; 21(3):177-87. PubMed ID: 1795919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure of DNA and Bacillus subtilis spores to simulated martian environments: use of quantitative PCR (qPCR) to measure inactivation rates of DNA to function as a template molecule.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Astrobiology; 2010 May; 10(4):403-11. PubMed ID: 20528195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes.
    Roth S; Feichtinger J; Hertel C
    J Appl Microbiol; 2010 Feb; 108(2):521-31. PubMed ID: 19659696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon.
    Schuerger AC; Moores JE; Smith DJ; Reitz G
    Astrobiology; 2019 Jun; 19(6):730-756. PubMed ID: 30810338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.