These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 8920988)
1. Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca(2+)-free enzyme with Ca2+, Sr2+ or Ba2+. Goodwin MG; Avezoux A; Dales SL; Anthony C Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):839-42. PubMed ID: 8920988 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site. Goodwin MG; Anthony C Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):673-9. PubMed ID: 8809062 [TBL] [Abstract][Full Text] [Related]
3. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Richardson IW; Anthony C Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):709-15. PubMed ID: 1332681 [TBL] [Abstract][Full Text] [Related]
4. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Avezoux A; Goodwin MG; Anthony C Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):735-41. PubMed ID: 7741704 [TBL] [Abstract][Full Text] [Related]
5. Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme-bound Ca2+ with Sr2+. Harris TK; Davidson VL Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):141-5. PubMed ID: 7945232 [TBL] [Abstract][Full Text] [Related]
6. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Blake CC; Ghosh M; Harlos K; Avezoux A; Anthony C Nat Struct Biol; 1994 Feb; 1(2):102-5. PubMed ID: 7656012 [TBL] [Abstract][Full Text] [Related]
7. Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase. Harris TK; Davidson VL Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):175-82. PubMed ID: 8198531 [TBL] [Abstract][Full Text] [Related]
8. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Ghosh M; Anthony C; Harlos K; Goodwin MG; Blake C Structure; 1995 Feb; 3(2):177-87. PubMed ID: 7735834 [TBL] [Abstract][Full Text] [Related]
9. Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni. Purification, characterization, and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. de Jong GA; Geerlof A; Stoorvogel J; Jongejan JA; de Vries S; Duine JA Eur J Biochem; 1995 Jun; 230(3):899-905. PubMed ID: 7601151 [TBL] [Abstract][Full Text] [Related]
10. Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Groen BW; van Kleef MA; Duine JA Biochem J; 1986 Mar; 234(3):611-5. PubMed ID: 3521592 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426 [TBL] [Abstract][Full Text] [Related]
12. X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. Keitel T; Diehl A; Knaute T; Stezowski JJ; Höhne W; Görisch H J Mol Biol; 2000 Apr; 297(4):961-74. PubMed ID: 10736230 [TBL] [Abstract][Full Text] [Related]
13. X-ray structure of PQQ-dependent methanol dehydrogenase. Ghosh M; Avezoux A; Anthony C; Harlos K; Blake CC EXS; 1994; 71():251-60. PubMed ID: 8032156 [TBL] [Abstract][Full Text] [Related]
14. Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Cozier GE; Anthony C Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):679-85. PubMed ID: 8554505 [TBL] [Abstract][Full Text] [Related]
15. Effects of Ca2+ on the activity and stability of methanol dehydrogenase. Zhao Y; Wang G; Cao Z; Wang Y; Cheng H; Zhou HM J Protein Chem; 2000 Aug; 19(6):469-73. PubMed ID: 11195971 [TBL] [Abstract][Full Text] [Related]
16. The structure of the quinoprotein alcohol dehydrogenase of Acetobacter aceti modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Cozier GE; Giles IG; Anthony C Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):375-9. PubMed ID: 7772016 [TBL] [Abstract][Full Text] [Related]
17. The structural events associated with the binding of divalent cations to beta-bungarotoxin. Chu YP; Cheng YC; Yang CC; Chang LS Toxicon; 2005 Feb; 45(2):139-45. PubMed ID: 15626362 [TBL] [Abstract][Full Text] [Related]
18. The effects of Zn2+ on the uptake of Ca2+, Sr2+ and Ba2+ by bone powder and anorganic bone. Samachson J; Schmitz A Biochim Biophys Acta; 1969 Nov; 192(2):238-42. PubMed ID: 5392507 [No Abstract] [Full Text] [Related]
19. Sr2+ can become incorporated into an agonist-sensitive, cytoplasmic Ca2+ store in a cell line derived from the equine sweat gland epithelium. Ko WH; Pediani JD; Bovell DL; Wilson SM Experientia; 1995 Aug; 51(8):804-8. PubMed ID: 7649240 [TBL] [Abstract][Full Text] [Related]
20. The methanol oxidation genes mxaFJGIR (S) ACKLD in Methylobacterium extorquens. Amaratunga K; Goodwin PM; O'Connor CD; Anthony C FEMS Microbiol Lett; 1997 Jan; 146(1):31-8. PubMed ID: 8997703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]