These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8921201)

  • 41. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study.
    Durham D; Woolsey TA
    J Comp Neurol; 1985 May; 235(1):97-110. PubMed ID: 2985659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast.
    Weng JC; Chen JH; Yang PF; Tseng WY
    Neuroimage; 2007 Jul; 36(4):1179-88. PubMed ID: 17537649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex.
    Nowicka D; Soulsby S; Skangiel-Kramska J; Glazewski S
    Eur J Neurosci; 2009 Dec; 30(11):2053-63. PubMed ID: 20128844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortical columnar processing in the rat whisker-to-barrel system.
    Brumberg JC; Pinto DJ; Simons DJ
    J Neurophysiol; 1999 Oct; 82(4):1808-17. PubMed ID: 10515970
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex.
    Peyrounette M; Davit Y; Quintard M; Lorthois S
    PLoS One; 2018; 13(1):e0189474. PubMed ID: 29324784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An automated workflow for the anatomo-functional mapping of the barrel cortex.
    Perronnet L; Vilarchao ME; Hucher G; Shulz DE; Peyré G; Ferezou I
    J Neurosci Methods; 2016 Apr; 263():145-54. PubMed ID: 26384542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterogeneous effects of cholecystokinin on neuronal response properties in deep layers of rat barrel cortex.
    Soltani N; Roohbakhsh A; Allahtavakoli M; Salari E; Sheibani V; Fatemi I; Shamsizadeh A
    Somatosens Mot Res; 2018 Jun; 35(2):131-138. PubMed ID: 30105939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex.
    Hartung G; Vesel C; Morley R; Alaraj A; Sled J; Kleinfeld D; Linninger A
    PLoS Comput Biol; 2018 Nov; 14(11):e1006549. PubMed ID: 30452440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels.
    Kyriazi HT; Carvell GE; Brumberg JC; Simons DJ
    J Neurophysiol; 1996 Feb; 75(2):547-60. PubMed ID: 8714634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intercolumnar synchronization of neuronal activity in rat barrel cortex during patterned airjet stimulation: a laminar analysis.
    Zhang M; Alloway KD
    Exp Brain Res; 2006 Mar; 169(3):311-25. PubMed ID: 16284753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thalamocortical response transformation in the rat vibrissa/barrel system.
    Simons DJ; Carvell GE
    J Neurophysiol; 1989 Feb; 61(2):311-30. PubMed ID: 2918357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound.
    van Raaij ME; Lindvere L; Dorr A; He J; Sahota B; Foster FS; Stefanovic B
    Neuroimage; 2012 Nov; 63(3):1030-7. PubMed ID: 22871388
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurogenic control of parenchymal arterioles in the cerebral cortex.
    Hotta H
    Prog Brain Res; 2016; 225():3-39. PubMed ID: 27130409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural correlates of single-vessel haemodynamic responses in vivo.
    O'Herron P; Chhatbar PY; Levy M; Shen Z; Schramm AE; Lu Z; Kara P
    Nature; 2016 Jun; 534(7607):378-82. PubMed ID: 27281215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures.
    Nersesyan H; Herman P; Erdogan E; Hyder F; Blumenfeld H
    J Cereb Blood Flow Metab; 2004 Sep; 24(9):1057-68. PubMed ID: 15356426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The evolution of whisker-mediated somatosensation in mammals: Sensory processing in barrelless S1 cortex of a marsupial, Monodelphis domestica.
    Ramamurthy DL; Krubitzer LA
    J Comp Neurol; 2016 Dec; 524(17):3587-3613. PubMed ID: 27098555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
    Kasischke KA; Lambert EM; Panepento B; Sun A; Gelbard HA; Burgess RW; Foster TH; Nedergaard M
    J Cereb Blood Flow Metab; 2011 Jan; 31(1):68-81. PubMed ID: 20859293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional recruitment of red blood cells to rat brain microcirculation accompanying increased neuronal activity in cerebellar cortex.
    Akgören N; Lauritzen M
    Neuroreport; 1999 Nov; 10(16):3257-63. PubMed ID: 10599830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optical microangiography reveals temporal and depth-resolved hemodynamic change in mouse barrel cortex during whisker stimulation.
    Rakymzhan A; Li Y; Tang P; Wang RK
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32945154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.
    Lacoste B; Comin CH; Ben-Zvi A; Kaeser PS; Xu X; Costa Lda F; Gu C
    Neuron; 2014 Sep; 83(5):1117-30. PubMed ID: 25155955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.