BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8921306)

  • 1. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
    Colasante C; Meunier FA; Kreger AS; Molgó J
    Eur J Neurosci; 1996 Oct; 8(10):2149-56. PubMed ID: 8921306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trachynilysin, a neurosecretory protein isolated from stonefish (Synanceia trachynis) venom, forms nonselective pores in the membrane of NG108-15 cells.
    Ouanounou G; Malo M; Stinnakre J; Kreger AS; Molgo J
    J Biol Chem; 2002 Oct; 277(42):39119-27. PubMed ID: 12177053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Ca2+.
    Meunier FA; Mattei C; Chameau P; Lawrence G; Colasante C; Kreger AS; Dolly JO; Molgó J
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1119-25. PubMed ID: 10704363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent increase in quantal secretion induced by brevetoxin-3 in Ca2+-free medium is associated with depletion of synaptic vesicles and swelling of motor nerve terminals in situ.
    Meunier FA; Colasante C; Molgo J
    Neuroscience; 1997 Jun; 78(3):883-93. PubMed ID: 9153666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of botulinum type-A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide m-chlorophenylhydrazone.
    Pécot-Dechavassine M; Molgo J; Thesleff S
    Neurosci Lett; 1991 Sep; 130(1):5-8. PubMed ID: 1684235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions.
    Kreger AS; Molgó J; Comella JX; Hansson B; Thesleff S
    Toxicon; 1993 Mar; 31(3):307-17. PubMed ID: 8470134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of trachynilysin, a protein isolated from stonefish (Synanceia trachynis) venom, on frog atrial heart muscle.
    Sauviat MP; Meunier FA; Kreger A; Molgó J
    Toxicon; 2000 Jul; 38(7):945-59. PubMed ID: 10728832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of carbonyl cyanide m-chlorophenylhydrazone on quantal transmitter release and ultrastructure of frog motor nerve terminals.
    Molgo J; Pecot-Dechavassine M
    Neuroscience; 1988 Feb; 24(2):695-708. PubMed ID: 2834667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heterogeneity of vesicular acetylcholine storage in cholinergic nerve terminals.
    Prior C; Tian L
    Pharmacol Res; 1995 Dec; 32(6):345-53. PubMed ID: 8736485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus.
    Sang Q; Young HM
    J Comp Neurol; 1997 Sep; 386(1):119-36. PubMed ID: 9303529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pharmacological properties of fish venoms].
    Goudey-Perrière F; Perrière C
    C R Seances Soc Biol Fil; 1998; 192(3):503-48. PubMed ID: 9759386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin.
    Dreyer F; Rosenberg F; Becker C; Bigalke H; Penner R
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Jan; 335(1):1-7. PubMed ID: 2883583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice.
    Gaydukov AE; Balezina OP
    Brain Behav; 2018 Aug; 8(8):e01058. PubMed ID: 29978952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats.
    Zhang X; Nicholas AP; Hökfelt T
    Neuroscience; 1993 Nov; 57(2):365-84. PubMed ID: 7509467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction.
    Matteoli M; Haimann C; Torri-Tarelli F; Polak JM; Ceccarelli B; De Camilli P
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7366-70. PubMed ID: 3050995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction.
    Ceccarelli B; Hurlbut WP
    J Cell Biol; 1980 Oct; 87(1):297-303. PubMed ID: 6252215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals.
    Henkel AW; Betz WJ
    J Neurosci; 1995 Dec; 15(12):8246-58. PubMed ID: 8613758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cadmium on quantal transmitter release and ultrastructure of frog motor nerve endings.
    Molgó J; Pécot-Dechavassine M; Thesleff S
    J Neural Transm; 1989; 77(2-3):79-91. PubMed ID: 2569499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cd(2+)-and K(+)-evoked ACh release induce different synaptophysin and synaptobrevin immunolabelling at the frog neuromuscular junction.
    Colasante C; Pécot-Dechavassine M
    J Neurocytol; 1995 Aug; 24(8):547-58. PubMed ID: 7595664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.