These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 892146)
21. Random distribution of the glucose transporter of human erythrocytes in reconstituted liposomes. Sase S; Anraku Y; Nagano M; Osumi M; Kasahara M J Biol Chem; 1982 Sep; 257(18):11100-5. PubMed ID: 7202007 [TBL] [Abstract][Full Text] [Related]
22. The monosaccharide transport system of the human erythrocyte. Orientation upon reconstitution. Baldwin JM; Lienhard GE; Baldwin SA Biochim Biophys Acta; 1980 Jul; 599(2):699-714. PubMed ID: 7407110 [TBL] [Abstract][Full Text] [Related]
23. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
24. Reconstitution of the erythrocyte anion transport system: in vitro and in vivo approaches. Cabantchik ZI; Volsky DJ; Ginsburg H; Loyter A Ann N Y Acad Sci; 1980; 341():444-54. PubMed ID: 6249154 [No Abstract] [Full Text] [Related]
25. The kinetics and thermodynamics of glucose transport in human erythrocytes: indications for the molecular mechanism of transport. Lowe AG Biochem Soc Trans; 1989 Jun; 17(3):435-8. PubMed ID: 2753214 [No Abstract] [Full Text] [Related]
26. Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes. Rampal AL; Pinkofsky HB; Jung CY Biochemistry; 1980 Feb; 19(4):679-83. PubMed ID: 7356953 [TBL] [Abstract][Full Text] [Related]
27. Anion transport across the red blood cell membrane mediated by dielectric pores. Schnell KF J Membr Biol; 1977 Oct; 37(2):99-136. PubMed ID: 926164 [No Abstract] [Full Text] [Related]
28. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes. Zoccoli MA; Lienhard GE J Biol Chem; 1977 May; 252(10):3131-5. PubMed ID: 863876 [TBL] [Abstract][Full Text] [Related]
29. D-glucose permeability of black lipid membranes modified by human erythrocyte membrane fractions. Lidgard GP; Jones MN J Membr Biol; 1975 Apr; 21(1-2):1-10. PubMed ID: 1238573 [TBL] [Abstract][Full Text] [Related]
30. The glucose transport activity of human erythrocyte membranes. Reconstitution in phospholipid liposomes and fractionation by molecular sieve and ion exchange chromatography. Fröman G; Acevedo F; Lundahl P; Hjertén S Biochim Biophys Acta; 1980 Aug; 600(2):489-501. PubMed ID: 7407124 [TBL] [Abstract][Full Text] [Related]
31. High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. Lin S; Snyder CE J Biol Chem; 1977 Aug; 252(15):5464-71. PubMed ID: 407226 [No Abstract] [Full Text] [Related]
32. Evidence for multiple affinities for D-glucose inside the human erythrocyte membrane [proceedings]. Baker GF; Naftalin RJ J Physiol; 1977 Oct; 271(2):46P-47P. PubMed ID: 925997 [No Abstract] [Full Text] [Related]
33. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity. Jung CY; Pinkofsky HB; Cowden MW Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240 [TBL] [Abstract][Full Text] [Related]
34. Can glucose transport across the human erythrocyte membrane be sustained against a concentration gradient? [proceedings]. Mahatma M; Thomas HW J Physiol; 1979 Nov; 296():104P. PubMed ID: 529066 [No Abstract] [Full Text] [Related]
35. Reconstitution of glucose-transporting vesicles from erythrocyte membranes disaggregated in detergent. Edwards PA Biochem J; 1977 Apr; 164(1):125-9. PubMed ID: 880225 [TBL] [Abstract][Full Text] [Related]
36. Reconstitution of D-glucose transport in vesicles composed of lipids and a partially purified protein from the human erythrocyte membrane. Zala CA; Kahlenberg A Biochem Biophys Res Commun; 1976 Oct; 72(3):866-74. PubMed ID: 985523 [No Abstract] [Full Text] [Related]
37. Solubilization, reconstitution, and attempted affinity chromatography of the sugar transporter of the erythrocyte membrane. Weber J; Warden DA; Semenza G; Diedrich DF J Cell Biochem; 1985; 27(2):83-96. PubMed ID: 4039332 [TBL] [Abstract][Full Text] [Related]
38. Monosaccharide transport system of the human erythrocyte. Identification of the cytochalasin B binding component. Lienhard GE; Gorga FR; Orasky JE; Zoccoli MA Biochemistry; 1977 Nov; 16(22):4921-6. PubMed ID: 911802 [No Abstract] [Full Text] [Related]
39. Asymmetric binding of steroids to internal and external sites in the glucose carrier of erythrocytes. Krupka RM; Devés R Biochim Biophys Acta; 1980 May; 598(1):134-44. PubMed ID: 7417422 [TBL] [Abstract][Full Text] [Related]
40. Partial restoration of sodium and potassium gradients by human erythrocyte membranes. Freedman JC Biochim Biophys Acta; 1976 Dec; 455(3):989-92. PubMed ID: 999949 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]