These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 892191)

  • 1. The methanogenic fermentation of aromatic substrates.
    Balba MT; Evans WC
    Biochem Soc Trans; 1977; 5(1):302-4. PubMed ID: 892191
    [No Abstract]   [Full Text] [Related]  

  • 2. Fate of metabolic hydrogen in the rumen.
    Czerkawski JW
    Proc Nutr Soc; 1972 Sep; 31(2):141-6. PubMed ID: 4563287
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments.
    Evans WC
    Nature; 1977 Nov; 270(5632):17-22. PubMed ID: 927513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenesis of methane.
    Mah RA; Ward DM; Baresi L; Glass TL
    Annu Rev Microbiol; 1977; 31():309-41. PubMed ID: 20832
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.
    Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O
    Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets.
    Chong L; Zhuping Z; Tongjun G; Yongming L; Hongmin D
    J Basic Microbiol; 2014 Jun; 54(6):521-30. PubMed ID: 23696266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of C18 unsaturated fatty acids of methane production in vitro by mixed rumen bacteria.
    Demeyer DI; Henderickx HK
    Biochim Biophys Acta; 1967 Jun; 137(3):484-97. PubMed ID: 6072276
    [No Abstract]   [Full Text] [Related]  

  • 10. Evaluation of a rumen fermentation balance, corrected for cell synthesis.
    Demeyer D; Henderickx H; Van Nevel C
    Proc Nutr Soc; 1972 Sep; 31(2):54A. PubMed ID: 5083278
    [No Abstract]   [Full Text] [Related]  

  • 11. Requirement of thiol groups in methane production by rumen bacteria.
    Demeyer D; Henderickx H
    Arch Int Physiol Biochim; 1964 Nov; 72(5):923-5. PubMed ID: 4157547
    [No Abstract]   [Full Text] [Related]  

  • 12. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT
    BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations.
    Patra AK; Yu Z
    J Appl Microbiol; 2015 Jul; 119(1):127-38. PubMed ID: 25846054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the inverse relationship between methane and propionate in the rumen.
    van Nevel CJ; Prins RA; Demeyer DI
    Z Tierphysiol Tierernahr Futtermittelkd; 1974 Jun; 33(3):121-5. PubMed ID: 4471670
    [No Abstract]   [Full Text] [Related]  

  • 15. The anaerobic decomposition of benzoic acid during methane fermentation. IV. Dearomatization of the ring and volatile fatty acids formed on ring rupture.
    Keith CL; Bridges RL; Fina LR; Iverson KL; Cloran JA
    Arch Microbiol; 1978 Aug; 118(2):173-6. PubMed ID: 697507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anaerobic decomposition of benzoic acid during methane fermentation. III. The fate of carbon four and the identification of propanoic acid.
    Fina LR; Bridges RL; Coblentz TH; Roberts FF
    Arch Microbiol; 1978 Aug; 118(2):169-72. PubMed ID: 697506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein fermentation and growth by rumen microbes.
    Demeyer D; Van Nevel C
    Ann Rech Vet; 1979; 10(2-3):277-9. PubMed ID: 119471
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats.
    Abecia L; Toral PG; Martín-García AI; Martínez G; Tomkins NW; Molina-Alcaide E; Newbold CJ; Yáñez-Ruiz DR
    J Dairy Sci; 2012 Apr; 95(4):2027-36. PubMed ID: 22459848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of choline methyl groups through trimethylamine into methane in the rumen.
    Neill AR; Grime DW; Dawson RM
    Biochem J; 1978 Mar; 170(3):529-35. PubMed ID: 646798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol and phenol degradation by a methanogenic population of bacteria.
    Healy JB; Young LY
    Appl Environ Microbiol; 1978 Jan; 35(1):216-8. PubMed ID: 623466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.