BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 892193)

  • 1. Effect of riboflavin deficiency on activity of NADH-FMN oxidoreductase (ferriductase) and iron content of rat liver.
    Zaman Z; Verwilghen RL
    Biochem Soc Trans; 1977; 5(1):306-8. PubMed ID: 892193
    [No Abstract]   [Full Text] [Related]  

  • 2. NADH-FMN oxidoreductase activity and iron content of organs from riboflavin and iron-deficient rats.
    Sirivech S; Driskell J; Frieden E
    J Nutr; 1977 May; 107(5):739-45. PubMed ID: 859041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates.
    Topham R; Goger M; Pearce K; Schultz P
    Biochem J; 1989 Jul; 261(1):137-43. PubMed ID: 2775199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiment to determine the effect of riboflavin deficiency at weaning on iron economy and heme synthesis.
    Powers HJ
    Ann Nutr Metab; 1985; 29(5):261-6. PubMed ID: 4051448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pregnancy and riboflavin deficiency on some aspects of iron metabolism in rats.
    Powers HJ; Bates CJ
    Int J Vitam Nutr Res; 1984; 54(2-3):179-83. PubMed ID: 6500841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the relative effects of riboflavin deprivation on iron economy in the weanling rat and the adult.
    Powers HJ
    Ann Nutr Metab; 1986; 30(5):308-15. PubMed ID: 3752930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between changes in properties and contents of riboflavin derivatives of NADPH-cytochrome P-450 reductase in the liver microsomes of riboflavin-deficient rats.
    Hara T; Taniguchi M
    J Biochem; 1985 Feb; 97(2):473-82. PubMed ID: 3924902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of riboflavin deficiency in rats on some aspects of iron metabolism.
    Powers HJ; Bates CJ; Duerden JM
    Int J Vitam Nutr Res; 1983; 53(4):371-6. PubMed ID: 6668137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of copper riboflavin on azo reductase activity in the liver of rats.
    Yamane Y; Sakai K; Shibata M
    Chem Pharm Bull (Tokyo); 1978 Jan; 26(1):251-5. PubMed ID: 416919
    [No Abstract]   [Full Text] [Related]  

  • 10. Abnormal NADPH-cytochrome P-450 reductase in the liver microsomes of riboflavin-deficient rats.
    Hara T; Taniguchi M
    Biochem Biophys Res Commun; 1982 Jan; 104(2):394-401. PubMed ID: 6803782
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Coves J; Fontecave M
    Eur J Biochem; 1993 Feb; 211(3):635-41. PubMed ID: 8436123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of changes in the uptake and mucosal processing of iron in riboflavin-deficient rats.
    Butler BF; Topham RW
    Biochem Mol Biol Int; 1993 May; 30(1):53-61. PubMed ID: 8358336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of riboflavin deficiency on absorption and liver storage of iron in the growing rat.
    Adelekan DA; Thurnham DI
    Br J Nutr; 1986 Jul; 56(1):171-9. PubMed ID: 3676194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of riboflavin-metabolizing enzymes in riboflavin deficiency.
    Fass S; Rivlin RS
    Am J Physiol; 1969 Oct; 217(4):988-91. PubMed ID: 4309977
    [No Abstract]   [Full Text] [Related]  

  • 15. Hepatic glutathione reductase and riboflavin concentrations in experimental deficiency of thiamin and riboflavin in rats.
    Bamji MS; Sharada D
    J Nutr; 1972 Mar; 102(3):443-7. PubMed ID: 5061037
    [No Abstract]   [Full Text] [Related]  

  • 16. Uptake and endocytic pathway of transferrin and iron in perfused rat liver.
    Goldenberg H; Seelos C; Chatwani S; Chegini S; Pumm R
    Biochim Biophys Acta; 1991 Aug; 1067(2):145-52. PubMed ID: 1878368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riboflavin-iron interactions with particular emphasis on the gastrointestinal tract.
    Powers HJ
    Proc Nutr Soc; 1995 Jul; 54(2):509-17. PubMed ID: 8524897
    [No Abstract]   [Full Text] [Related]  

  • 18. Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2.
    Hallé F; Meyer JM
    Eur J Biochem; 1992 Oct; 209(2):621-7. PubMed ID: 1425668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboflavin deficiency in the rat: effects on iron utilization and loss.
    Powers HJ; Weaver LT; Austin S; Wright AJ; Fairweather-Tait SJ
    Br J Nutr; 1991 May; 65(3):487-96. PubMed ID: 1878361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the control of luminescence in Beneckea harveyi: properties of the NADH and NADPH:FMN oxidoreductases.
    Jablonski E; DeLuca M
    Biochemistry; 1978 Feb; 17(4):672-8. PubMed ID: 23827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.