BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8922230)

  • 1. Stability of trypsin immobilized on inorganic orthopedic biomaterials.
    Holt LJ; Puleo DA
    Artif Cells Blood Substit Immobil Biotechnol; 1996 Nov; 24(6):613-20. PubMed ID: 8922230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention of enzymatic activity immobilized on silanized Co-Cr-Mo and Ti-6Al-4V.
    Puleo DA
    J Biomed Mater Res; 1997 Nov; 37(2):222-8. PubMed ID: 9358315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of p-nitrophenyl chloroformate chemistry to immobilize protein on orthopedic biomaterials.
    Mikulec LJ; Puleo DA
    J Biomed Mater Res; 1996 Oct; 32(2):203-8. PubMed ID: 8884496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical surface modification of Ti-6Al-4V for the delivery of protein to the cell-biomaterial interface.
    Wojcik SM; Puleo DA
    Biomed Sci Instrum; 1997; 33():166-71. PubMed ID: 9731354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical surface modification of Co-Cr-Mo.
    Puleo DA
    Biomaterials; 1996 Jan; 17(2):217-22. PubMed ID: 8624398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of enzyme immobilized on silanized Co-Cr-Mo.
    Puleo DA
    J Biomed Mater Res; 1995 Aug; 29(8):951-7. PubMed ID: 7593038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy.
    Puleo DA; Kissling RA; Sheu MS
    Biomaterials; 2002 May; 23(9):2079-87. PubMed ID: 11996050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(7):631-7. PubMed ID: 10208405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cells.
    Howlett CR; Zreiqat H; Wu Y; McFall DW; McKenzie DR
    J Biomed Mater Res; 1999 Jun; 45(4):345-54. PubMed ID: 10321707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term microvascular response of striated muscle to cp-Ti, Ti-6Al-4V, and Ti-6Al-7Nb.
    Pennekamp PH; Gessmann J; Diedrich O; Burian B; Wimmer MA; Frauchiger VM; Kraft CN
    J Orthop Res; 2006 Mar; 24(3):531-40. PubMed ID: 16463365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.
    Tkachenko S; Datskevich O; Kulak L; Jacobson S; Engqvist H; Persson C
    J Mech Behav Biomed Mater; 2014 Nov; 39():61-72. PubMed ID: 25105238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics.
    Harcuba P; Bačáková L; Stráský J; Bačáková M; Novotná K; Janeček M
    J Mech Behav Biomed Mater; 2012 Mar; 7():96-105. PubMed ID: 22340689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
    Singh R; Kurella A; Dahotre NB
    J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution.
    Lee TM
    J Mater Sci Mater Med; 2006 Jan; 17(1):15-27. PubMed ID: 16389468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application.
    Ganapathy P; Manivasagam G; Rajamanickam A; Natarajan A
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):213-22. PubMed ID: 26491323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.