These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8922265)

  • 1. Shape optimisation of a Charnley prosthesis based on the fatigue notch factor.
    Hedia HS; Barton DC; Fisher J; Ibrahim A
    Biomed Mater Eng; 1996; 6(3):199-217. PubMed ID: 8922265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material optimisation of the femoral component of a hip prosthesis based on the fatigue notch fatigue approach.
    Hedia HS; Barton DC; Fisher J
    Biomed Mater Eng; 1997; 7(2):83-98. PubMed ID: 9262822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for shape optimization of a hip prosthesis to maximize the fatigue life of the cement.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Med Eng Phys; 1996 Dec; 18(8):647-54. PubMed ID: 8953557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of elastic modulus of the backing material on the fatigue notch factor and stress.
    Hedia HS; Abdl-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(3-4):141-56. PubMed ID: 11202144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffness optimisation of cement and stem materials in total hip replacement.
    Hedia HS
    Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro measurement of strain in the bone cement surrounding the femoral component of total hip replacements during simulated gait and stair-climbing.
    O'Connor DO; Burke DW; Jasty M; Sedlacek RC; Harris WH
    J Orthop Res; 1996 Sep; 14(5):769-77. PubMed ID: 8893771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of stem length on mechanics of the femoral hip component after cemented revision.
    Mann KA; Ayers DC; Damron TA
    J Orthop Res; 1997 Jan; 15(1):62-8. PubMed ID: 9066528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new design of cemented stem using functionally graded materials (FGM).
    Hedia HS; Aldousari SM; Abdellatif AK; Fouda N
    Biomed Mater Eng; 2014; 24(3):1575-88. PubMed ID: 24840196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Early aseptic loosening of the CF 30 femoral stem].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2007 Feb; 74(1):59-64. PubMed ID: 17331456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of variation of prosthesis size on cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    J Biomed Mater Res; 1994 Sep; 28(9):1055-60. PubMed ID: 7814433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cement mantle fatigue failure in total hip replacement: experimental and computational testing.
    Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M
    J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape optimal design of the stem of a cemented hip prosthesis to minimize stress concentration in the cement layer.
    Yoon YS; Jang GH; Kim YY
    J Biomech; 1989; 22(11-12):1279-84. PubMed ID: 2625429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.