These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 8922336)
1. Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Honig LS; Herrmann K; Shatz CJ Cereb Cortex; 1996; 6(6):794-806. PubMed ID: 8922336 [TBL] [Abstract][Full Text] [Related]
2. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699 [TBL] [Abstract][Full Text] [Related]
3. Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Cobas A; Fairén A; Alvarez-Bolado G; Sánchez MP Neuroscience; 1991; 40(2):375-97. PubMed ID: 1851254 [TBL] [Abstract][Full Text] [Related]
4. Microtubule-associated protein 2 (MAP 2) immunoreactivity in human fetal neocortex. Sims KB; Crandall JE; Kosik KS; Williams RS Brain Res; 1988 May; 449(1-2):192-200. PubMed ID: 3293702 [TBL] [Abstract][Full Text] [Related]
5. Nerve growth factor receptor-immunoreactive neurons within the developing human cortex. Kordower JH; Mufson EJ J Comp Neurol; 1992 Sep; 323(1):25-41. PubMed ID: 1385492 [TBL] [Abstract][Full Text] [Related]
6. The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. Chun JJ; Shatz CJ J Neurosci; 1989 May; 9(5):1648-67. PubMed ID: 2566660 [TBL] [Abstract][Full Text] [Related]
7. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation. Fayol L; Baud O; Monier A; Pellerin L; Magistretti P; Evrard P; Verney C Brain Res Dev Brain Res; 2004 Jan; 148(1):69-76. PubMed ID: 14757520 [TBL] [Abstract][Full Text] [Related]
8. Cajal-Retzius cells and subplate neurons differentially express vesicular glutamate transporters 1 and 2 during development of mouse cortex. Ina A; Sugiyama M; Konno J; Yoshida S; Ohmomo H; Nogami H; Shutoh F; Hisano S Eur J Neurosci; 2007 Aug; 26(3):615-23. PubMed ID: 17651422 [TBL] [Abstract][Full Text] [Related]
9. Development of layer I of the human cerebral cortex after midgestation: architectonic findings, immunocytochemical identification of neurons and glia, and in situ labeling of apoptotic cells. Spreafico R; Arcelli P; Frassoni C; Canetti P; Giaccone G; Rizzuti T; Mastrangelo M; Bentivoglio M J Comp Neurol; 1999 Jul; 410(1):126-42. PubMed ID: 10397400 [TBL] [Abstract][Full Text] [Related]
10. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. Soriano E; Del Río JA; Martínez A; Supèr H J Comp Neurol; 1994 Apr; 342(4):571-95. PubMed ID: 7913715 [TBL] [Abstract][Full Text] [Related]
11. Development of GABA-immunoreactivity in the neocortex of the mouse. Del Rio JA; Soriano E; Ferrer I J Comp Neurol; 1992 Dec; 326(4):501-26. PubMed ID: 1484122 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. Fukuda T; Kawano H; Ohyama K; Li HP; Takeda Y; Oohira A; Kawamura K J Comp Neurol; 1997 Jun; 382(2):141-52. PubMed ID: 9183685 [TBL] [Abstract][Full Text] [Related]
13. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127 [TBL] [Abstract][Full Text] [Related]
14. Role of Cajal-Retzius and subplate neurons in cerebral cortical development. Sarnat HB; Flores-Sarnat L Semin Pediatr Neurol; 2002 Dec; 9(4):302-8. PubMed ID: 12523554 [TBL] [Abstract][Full Text] [Related]
15. Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex. Miller MW; Robertson S J Comp Neurol; 1993 Nov; 337(2):253-66. PubMed ID: 8276999 [TBL] [Abstract][Full Text] [Related]
16. Developmental expression of Bis protein in the cerebral cortex and hippocampus of rats. Choi JS; Lee JH; Kim HY; Chun MH; Chung JW; Lee MY Brain Res; 2006 May; 1092(1):69-78. PubMed ID: 16690035 [TBL] [Abstract][Full Text] [Related]
17. Interference with the development of early generated neocortex results in disruption of radial glia and abnormal formation of neocortical layers. Noctor SC; Palmer SL; Hasling T; Juliano SL Cereb Cortex; 1999 Mar; 9(2):121-36. PubMed ID: 10220225 [TBL] [Abstract][Full Text] [Related]
18. A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons. Chun JJ; Shatz CJ J Cell Biol; 1988 Mar; 106(3):857-72. PubMed ID: 3346327 [TBL] [Abstract][Full Text] [Related]
19. Changes in calcium-binding protein expression in human cortical contusion tissue. Buriticá E; Villamil L; Guzmán F; Escobar MI; García-Cairasco N; Pimienta HJ J Neurotrauma; 2009 Dec; 26(12):2145-55. PubMed ID: 19645526 [TBL] [Abstract][Full Text] [Related]
20. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. Meyer G; Soria JM; Martínez-Galán JR; Martín-Clemente B; Fairén A J Comp Neurol; 1998 Aug; 397(4):493-518. PubMed ID: 9699912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]