BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 8922419)

  • 1. Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development.
    Quinlan EM; Halpain S
    J Neurosci; 1996 Dec; 16(23):7627-37. PubMed ID: 8922419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors.
    Quinlan EM; Halpain S
    Neuron; 1996 Feb; 16(2):357-68. PubMed ID: 8789950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2.
    Halpain S; Greengard P
    Neuron; 1990 Sep; 5(3):237-46. PubMed ID: 2169265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus.
    Sánchez C; Ulloa L; Montoro RJ; López-Barneo J; Avila J
    Brain Res; 1997 Aug; 765(1):141-8. PubMed ID: 9310405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function.
    Sánchez C; Díaz-Nido J; Avila J
    Prog Neurobiol; 2000 Jun; 61(2):133-68. PubMed ID: 10704996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High external potassium induces an increase in the phosphorylation of the cytoskeletal protein MAP2 in rat hippocampal slices.
    Díaz-Nido J; Montoro RJ; López-Barneo J; Avila J
    Eur J Neurosci; 1993 Jul; 5(7):818-24. PubMed ID: 8281293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-methyl-D-aspartate stimulates the dephosphorylation of the microtubule-associated protein 2 and potentiates excitatory synaptic pathways in the rat hippocampus.
    Montoro RJ; Díaz-Nido J; Avila J; López-Barneo J
    Neuroscience; 1993 Jun; 54(4):859-71. PubMed ID: 8393539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons.
    Audesirk G; Cabell L; Kern M
    Brain Res Dev Brain Res; 1997 Sep; 102(2):247-60. PubMed ID: 9352107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain.
    Gong CX; Wegiel J; Lidsky T; Zuck L; Avila J; Wisniewski HM; Grundke-Iqbal I; Iqbal K
    Brain Res; 2000 Jan; 853(2):299-309. PubMed ID: 10640627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly.
    Yamamoto H; Saitoh Y; Fukunaga K; Nishimura H; Miyamoto E
    J Neurochem; 1988 May; 50(5):1614-23. PubMed ID: 2834518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons.
    Wang JH; Kelly PT
    J Neurosci; 1997 Jun; 17(12):4600-11. PubMed ID: 9169521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaM kinase II in long-term potentiation.
    Fukunaga K; Muller D; Miyamoto E
    Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of protein kinase C and its neuronal substrates dephosphin, B-50, and MARCKS in neurotransmitter release.
    Robinson PJ
    Mol Neurobiol; 1991; 5(2-4):87-130. PubMed ID: 1688057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.
    Gomez LL; Alam S; Smith KE; Horne E; Dell'Acqua ML
    J Neurosci; 2002 Aug; 22(16):7027-44. PubMed ID: 12177200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin.
    Goto S; Yamamoto H; Fukunaga K; Iwasa T; Matsukado Y; Miyamoto E
    J Neurochem; 1985 Jul; 45(1):276-83. PubMed ID: 2987415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule disruption, not calpain-dependent loss of MAP2, contributes to enduring NMDA-induced dendritic dysfunction in acute hippocampal slices.
    Hoskison MM; Shuttleworth CW
    Exp Neurol; 2006 Dec; 202(2):302-12. PubMed ID: 16904106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus.
    Wu J; Huang KP; Huang FL
    J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex.
    Tyszkiewicz JP; Gu Z; Wang X; Cai X; Yan Z
    J Physiol; 2004 Feb; 554(Pt 3):765-77. PubMed ID: 14645456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAP2 phosphorylation and visual plasticity in Xenopus.
    Guo Y; Sánchez C; Udin SB
    Brain Res; 2001 Jun; 905(1-2):134-41. PubMed ID: 11423088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent phosphorylation of glial fibrillary acidic protein (GFAP) in the rat hippocampus: a comparison of the kinase/phosphatase balance in immature and mature slices using tryptic phosphopeptide mapping.
    Leal RB; Gonçalves CA; Rodnight R
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):1-10. PubMed ID: 9466702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.