These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8923735)

  • 1. Evidence for a selective and electroneutral K+/H(+)-exchange in Saccharomyces cerevisiae using plasma membrane vesicles.
    Camarasa C; Prieto S; Ros R; Salmon JM; Barre P
    Yeast; 1996 Oct; 12(13):1301-13. PubMed ID: 8923735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H+/K+ exchange in reconstituted yeast plasma membrane vesicles.
    Ramírez J; Peña A; Montero-Lomelí M
    Biochim Biophys Acta; 1996 Dec; 1285(2):175-82. PubMed ID: 8972701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Potassium transport in yeast].
    López R; Peña A
    Rev Latinoam Microbiol; 1999; 41(2):91-103. PubMed ID: 10970213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Ca(2+)/H(+) exchange in the plasma membrane of Saccharomyces cerevisiae.
    Hong S; Cong X; Jing H; Xia Z; Huang X; Hu X; Jiang X
    Arch Biochem Biophys; 2013 Sep; 537(1):125-32. PubMed ID: 23871844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical potential and ion transport in vesicles of yeast plasma membrane.
    Calahorra M; Ramírez J; Clemente SM; Peña A
    Biochim Biophys Acta; 1987 May; 899(2):229-38. PubMed ID: 2883994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles.
    Holoubek A; Vecer J; Opekarová M; Sigler K
    Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion transport studies with H+-K+-ATPase-rich vesicles: implications for HCl secretion and parietal cell physiology.
    Wolosin JM
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G595-607. PubMed ID: 2408481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar transport and potassium permeability in yeast plasma membrane vesicles.
    Fuhrmann GF; Boehm C; Theuvenet AP
    Biochim Biophys Acta; 1976 May; 433(3):583-96. PubMed ID: 776224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of sealed plasma membrane vesicles from Phytophthora megasperma f. sp. glycinea. I. Characterization of proton pumping and ATPase activity.
    Giannini JL; Holt JS; Briskin DP
    Arch Biochem Biophys; 1988 Sep; 265(2):337-45. PubMed ID: 2844118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton permeability of the plasma membrane of rat cortical synaptosomes.
    Schmalzing G
    Eur J Biochem; 1987 Oct; 168(1):27-35. PubMed ID: 2822404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-dependent generation of the electrochemical proton gradient delta muH+ in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufii.
    Gläser HU; Höfer M
    Biochim Biophys Acta; 1987 Dec; 905(2):287-94. PubMed ID: 2825781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes.
    Venema K; Gibrat R; Grouzis JP; Grignon C
    Biochim Biophys Acta; 1993 Feb; 1146(1):87-96. PubMed ID: 8382957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma membrane K+/H(+)-ATPase from Leishmania donovani.
    Jiang S; Anderson SA; Winget GD; Mukkada AJ
    J Cell Physiol; 1994 Apr; 159(1):60-6. PubMed ID: 8138591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a highly specific k/h antiporter in membrane vesicles from oil-seed rape hypocotyls.
    Cooper S; Lerner HR; Reinhold L
    Plant Physiol; 1991 Nov; 97(3):1212-20. PubMed ID: 16668511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.
    Van Leeuwen CC; Weusthuis RA; Postma E; Van den Broek PJ; Van Dijken JP
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):441-5. PubMed ID: 1318030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of membranes, especially of plasma-membrane fragments, during zonal centrifugations of homogenates from glucose-repressed Saccharomyces Cerevisiae.
    Nurminen T; Taskinen L; Suomalainen H
    Biochem J; 1976 Mar; 154(3):751-63. PubMed ID: 133674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of H(+),K(+)-ATPase-enriched Membrane Fraction from Pig Stomachs.
    Abe K; Olesen C
    Methods Mol Biol; 2016; 1377():19-27. PubMed ID: 26695019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to quantify H+-ATPase-dependent Na+ transport across plasma membrane vesicles.
    Yang Y; Hu L; Chen X; Ottow EA; Polle A; Jiang X
    Biochim Biophys Acta; 2007 Sep; 1768(9):2078-88. PubMed ID: 17706940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.