These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Microtubule depolymerization at high pressure. Nishiyama M; Shimoda Y; Hasumi M; Kimura Y; Terazima M Ann N Y Acad Sci; 2010 Feb; 1189():86-90. PubMed ID: 20233372 [TBL] [Abstract][Full Text] [Related]
5. Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. Hoenger A; Milligan RA J Mol Biol; 1997 Feb; 265(5):553-64. PubMed ID: 9048948 [TBL] [Abstract][Full Text] [Related]
6. Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro. Walter WJ; Beránek V; Fischermeier E; Diez S PLoS One; 2012; 7(8):e42218. PubMed ID: 22870307 [TBL] [Abstract][Full Text] [Related]
7. Deficient nucleation during co-polymerization of mammalian MAP2 and tobacco tubulin. Hugdahl JD; Morejohn LC Biochem Mol Biol Int; 1994 Sep; 34(2):375-84. PubMed ID: 7849649 [TBL] [Abstract][Full Text] [Related]
8. Elevated copper ion levels as potential cause of impaired kinesin-dependent transport processes. Böhm KJ Arch Toxicol; 2015 Apr; 89(4):565-72. PubMed ID: 24853401 [TBL] [Abstract][Full Text] [Related]
10. Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Harrison BC; Marchese-Ragona SP; Gilbert SP; Cheng N; Steven AC; Johnson KA Nature; 1993 Mar; 362(6415):73-5. PubMed ID: 8095324 [TBL] [Abstract][Full Text] [Related]
11. Pressure-induced changes in the structure and function of the kinesin-microtubule complex. Nishiyama M; Kimura Y; Nishiyama Y; Terazima M Biophys J; 2009 Feb; 96(3):1142-50. PubMed ID: 19186149 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the migration behaviour of single microtubules in electric fields. Stracke R; Böhm KJ; Wollweber L; Tuszynski JA; Unger E Biochem Biophys Res Commun; 2002 Apr; 293(1):602-9. PubMed ID: 12054645 [TBL] [Abstract][Full Text] [Related]
13. The highly processive kinesin-8, Kip3, switches microtubule protofilaments with a bias toward the left. Bormuth V; Nitzsche B; Ruhnow F; Mitra A; Storch M; Rammner B; Howard J; Diez S Biophys J; 2012 Jul; 103(1):L4-6. PubMed ID: 22828351 [TBL] [Abstract][Full Text] [Related]
14. The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1. Feizabadi MS Cell Biochem Biophys; 2016 Sep; 74(3):373-80. PubMed ID: 27503105 [TBL] [Abstract][Full Text] [Related]
15. Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Sickles DW; Brady ST; Testino A; Friedman MA; Wrenn RW J Neurosci Res; 1996 Oct; 46(1):7-17. PubMed ID: 8892100 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient guiding of microtubule transport with imprinted CYTOP nanotracks. Cheng LJ; Kao MT; Meyhöfer E; Guo LJ Small; 2005 Apr; 1(4):409-14. PubMed ID: 17193465 [No Abstract] [Full Text] [Related]
17. Fluctuation in the microtubule sliding movement driven by kinesin in vitro. Imafuku Y; Toyoshima YY; Tawada K Biophys J; 1996 Feb; 70(2):878-86. PubMed ID: 8789105 [TBL] [Abstract][Full Text] [Related]
18. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. Liao G; Gundersen GG J Biol Chem; 1998 Apr; 273(16):9797-803. PubMed ID: 9545318 [TBL] [Abstract][Full Text] [Related]
19. Recovery of tubulin functions after freeze-drying in the presence of trehalose. Dráberová E; Sulimenko V; Sulimenko T; Böhm KJ; Dráber P Anal Biochem; 2010 Feb; 397(1):67-72. PubMed ID: 19825359 [TBL] [Abstract][Full Text] [Related]
20. Large fluctuations in the disassembly rate of microtubules revealed by atomic force microscopy. Thomson NH; Kasas S; Riederer BM; Catsicas S; Dietler G; Kulik AJ; Forró L Ultramicroscopy; 2003; 97(1-4):239-47. PubMed ID: 12801676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]