These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 8923963)
1. Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions. Jiang W; Hearn MT Anal Biochem; 1996 Nov; 242(1):45-54. PubMed ID: 8923963 [TBL] [Abstract][Full Text] [Related]
2. Protein selectivity with immobilized metal ion-tacn sorbents: chromatographic studies with human serum proteins and several other globular proteins. Jiang W; Graham B; Spiccia L; Hearn MT Anal Biochem; 1998 Jan; 255(1):47-58. PubMed ID: 9448841 [TBL] [Abstract][Full Text] [Related]
3. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. Finette GM; Mao QM; Hearn MT J Chromatogr A; 1997 Feb; 763(1-2):71-90. PubMed ID: 9129317 [TBL] [Abstract][Full Text] [Related]
4. Application of immobilized metal ion chelate complexes as pseudocation exchange adsorbents for protein separation. Zachariou M; Hearn MT Biochemistry; 1996 Jan; 35(1):202-11. PubMed ID: 8555175 [TBL] [Abstract][Full Text] [Related]
5. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent. Zhang S; Sun Y Biotechnol Prog; 2004; 20(1):207-14. PubMed ID: 14763844 [TBL] [Abstract][Full Text] [Related]
6. Water-elutability of nucleic acids from metal-chelate affinity adsorbents: enhancement by control of surface charge density. Fu JY; Potty AS; Fox GE; Willson RC J Mol Recognit; 2006; 19(4):348-53. PubMed ID: 16865664 [TBL] [Abstract][Full Text] [Related]
7. Examination of the binding behaviour of several proteins with the immobilized copper(II) complexes of o-, m- and p-xylylene bridged bis(1,4,7-triazacyclononane) macrocycles. Graham B; Spiccia L; Hearn MT J Chromatogr A; 2008 Jun; 1194(1):30-7. PubMed ID: 18440007 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the binding behavior of several histidine-containing proteins with immobilized copper(II) complexes of 1,4,7-triazacyclononane and 1,4-bis(1,4,7-triazacyclononan-1-yl)butane. Graham B; Spiccia L; Hearn MT J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):844-52. PubMed ID: 21429825 [TBL] [Abstract][Full Text] [Related]
9. Monosize poly(glycidyl methacrylate) beads for dye-affinity purification of lysozyme. Altintaş EB; Denizli A Int J Biol Macromol; 2006 Mar; 38(2):99-106. PubMed ID: 16516958 [TBL] [Abstract][Full Text] [Related]
10. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. El-Bayaa AA; Badawy NA; Alkhalik EA J Hazard Mater; 2009 Oct; 170(2-3):1204-9. PubMed ID: 19524366 [TBL] [Abstract][Full Text] [Related]
11. Influence of ligand density on the properties of metal-chelate affinity supports. Wirth HJ; Unger KK; Hearn MT Anal Biochem; 1993 Jan; 208(1):16-25. PubMed ID: 8382018 [TBL] [Abstract][Full Text] [Related]
12. Microcalorimetric Studies of the Interactions of Lysozyme with Immobilized Metal Ions: Effects of Ion, pH Value, and Salt Concentration. Lin FY; Chen WY; Sang LC J Colloid Interface Sci; 1999 Jun; 214(2):373-379. PubMed ID: 10339377 [TBL] [Abstract][Full Text] [Related]
13. Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Wu J; Luan M; Zhao J Int J Biol Macromol; 2006 Nov; 39(4-5):185-91. PubMed ID: 16712924 [TBL] [Abstract][Full Text] [Related]
14. Protein adsorption in porous adsorbent particles: a multiscale modeling study on inner radial humps in the concentration profiles of adsorbed protein induced by nonuniform ligand density distributions. Riccardi E; Wang JC; Liapis AI J Sep Sci; 2009 Sep; 32(18):3084-98. PubMed ID: 19630003 [TBL] [Abstract][Full Text] [Related]
15. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Pehlivan E; Cetin S; Yanik BH J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188 [TBL] [Abstract][Full Text] [Related]
16. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model. Boto RE; Anyanwu U; Sousa F; Almeida P; Queiroz JA Biomed Chromatogr; 2009 Sep; 23(9):987-93. PubMed ID: 19347966 [TBL] [Abstract][Full Text] [Related]
17. Protein adsorption on histidyl-aminohexyl-Sepharose 4B. II. Application to the negative one-step affinity purification of human beta2-microglobulin and immunoglobulin G. Pitiot O; Nedonchelle E; Legallais C; Vijayalakshmi MA J Chromatogr B Biomed Sci Appl; 2001 Jul; 758(2):173-82. PubMed ID: 11486826 [TBL] [Abstract][Full Text] [Related]
19. Interactions between an amphipathic di-histidine peptide and a metal affinity chromatographic resin derived from a bis(tacn)butane chelating ligand. Kreher U; Spiccia L; Hearn MTW J Sep Sci; 2019 Dec; 42(24):3631-3639. PubMed ID: 31651081 [TBL] [Abstract][Full Text] [Related]
20. Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme. Rojas EE; dos Reis Coimbra JS; Minim LA; Saraiva SH; da Silva CA J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Aug; 840(2):85-93. PubMed ID: 16750942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]